• Title/Summary/Keyword: 분류경계

Search Result 645, Processing Time 0.024 seconds

Extracting Land Cover Map and Boundary Line between Land and Sea from Hyperspectral Imagery (하이퍼스펙트럴 영상으로부터 객체기반 영상분류방법에 의한 토지피복도 및 수애선 추출)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Joo, Young-Don;Han, Seung-Hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.69-70
    • /
    • 2014
  • 연안지역에 대한 항공 하이퍼스펙트럴 영상으로부터 객체기반 분류방법을 이용하여 토지피복분류를 수행하고 기존에 주로 사용되어온 화소기반 분류기법에 의한 결과와 비교하였으며, 생성된 토지피복도로부터 해륙경계선인 수애선벡터를 용이하게 추출하는 방법을 제시하였다.

  • PDF

A Study on Automatic Vehicle Extraction within Drone Image Bounding Box Using Unsupervised SVM Classification Technique (무감독 SVM 분류 기법을 통한 드론 영상 경계 박스 내 차량 자동 추출 연구)

  • Junho Yeom
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.95-102
    • /
    • 2023
  • Numerous investigations have explored the integration of machine leaning algorithms with high-resolution drone image for object detection in urban settings. However, a prevalent limitation in vehicle extraction studies involves the reliance on bounding boxes rather than instance segmentation. This limitation hinders the precise determination of vehicle direction and exact boundaries. Instance segmentation, while providing detailed object boundaries, necessitates labour intensive labelling for individual objects, prompting the need for research on automating unsupervised instance segmentation in vehicle extraction. In this study, a novel approach was proposed for vehicle extraction utilizing unsupervised SVM classification applied to vehicle bounding boxes in drone images. The method aims to address the challenges associated with bounding box-based approaches and provide a more accurate representation of vehicle boundaries. The study showed promising results, demonstrating an 89% accuracy in vehicle extraction. Notably, the proposed technique proved effective even when dealing with significant variations in spectral characteristics within the vehicles. This research contributes to advancing the field by offering a viable solution for automatic and unsupervised instance segmentation in the context of vehicle extraction from image.

Pattern Classification System for Remote Sensing Data using Voronoi Diagram (보로노이 공간분류를 활용한 원격 영상 패턴분류 시스템)

  • Baek, Ju-Hyeon;Kim, Hong-Gi
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.335-342
    • /
    • 2001
  • 본 논문은 보로노이 공간분류를 활용하여 원격탐사 영상인식을 위한 다층 신경망 분류기를제안한다. 제안된 다층 신경망 분류기는 보로노이 다각형 영역으로 클래스를 구분하며, 초평면 방정식의 계수를 오류 역전과 학습 초기의 연결 강도, 임계치 그리고 은닉층의 노드 수로 결정한다. 제안된 방법은 오류역전과 학습 알고리즘에서 임의로 정해주던 초기 정보를 사전 분석에 의해 공학적으로 결정함으로써 느린 수렴 속도와 학습실패 등의 단점을 피할 수 있는 장점이 있다. 보로노이 다이어그램에 대한 경계선의 초평면 방정식은 훈련집합의 클래스별 평균값을 구하여 Mathematica 패키지로 계산하였다. 제안된 다층 신경망에 의한 영상분류기의 인식능력을 평가하기 위하여 원격탐사 영상인식에서 자주 활용되는 최소거리 분류 방법과 최대우도 분류 방법으로 처리해서 비교한 결과, 최소거리 분류 방법은 실험화상에 대해 81.4%, 최대우도 부류기에 의한 분류는 87.8%, 제안한 방법은 92.2% 정확성을 가진 분류결과를 나타냈다.

  • PDF

Using CRF (Conditional Random Fields) to Predict Phrase Breaks in Korean (CRF를 이용한 한국어 운율 경계 추정)

  • Kim, Seung-Won;Kim, Byeong-Chang;Jeong, Min-Woo;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.134-138
    • /
    • 2005
  • 본 논문은 한국어 TTS(Text-To-Speech)에서 운율 경계를 추정하는 문제를 클래스 분류문제로 보고 CRF(Conditional Random Fields)를 적용하여 운율 경계를 추정하였다. 우리는 품사와 운율 경계로 구성된 말뭉치를 사용하여 품사, 어휘, 단어의 길이, 문장에서의 단어 위치와 같은 다양한 속성의 언어적 자질을 추출하여 CRF를 훈련시켰으며, 자질들을 서로 조합하여 최고의 성능을 보이는 자질 집합을 골랐다 또한 가우스 평활 (Gaussian Smoothing)을 적용하여 데이터의 희소성 문제를 줄였다. 실험 결과에서 본 방법이 기존의 방법보다 성능이 좋을 뿐만 아니라 운율 경계를 추정하기 위한 자질을 독립시켰기 때문에 다른 시스템과의 호환성도 높다는 것을 알 수 있었다.

  • PDF

New Shot Boundary Detection Method Using Normalization (정규화를 이용한 새로운 샷 경계 검출 방법)

  • Shin, Seong-Yoon;Baik, Seong-Eun;Pyo, Seong-Bae;Rhee, Yang-Won
    • KSCI Review
    • /
    • v.15 no.1
    • /
    • pp.197-201
    • /
    • 2007
  • 비디오 분할은 샷 경계 검출이라고도 하는데, 비디오를 계층적이고 구조적인 형태로 표현하기 위하여 영상, 문자, 오디오와 같은 매체 속에 포함되어 있는 내용들을 특징별로 분석하여 계층별로 분류하는 작업을 말한다. 본 논문에서는 카메라와 객체의 모션에 보다 강건하고 보다 정확한 결과를 산출하여 충분한 공간 정보를 가지는 지역적 $X^2$-히스토그램 비교 방법을 이용하여 샷 경계를 검출한다. 또한 영상처리에서 영상의 명암 값 향상을 위하여 사용되는 로그함수와 상수를 변형하여 차이 값에 적용하는 정규화 방법을 제시한다. 그리고 샷 경계 검출 알고리즘을 제시하여 일반적인 샷과 갑작스런 샷의 특징을 기반으로 검출한다.

  • PDF

A Study on ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold (개선된 유사성 검증 방법과 동적인 경계 변수를 이용한 ART1 알고리즘에 관한 연구)

  • 민지희;홍제형;김재용;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.193-197
    • /
    • 2003
  • 기존의 ART1 알고리즘은 입력 패턴과 저장 패턴간의 유사성 검증 방법의 문제점과 경계 변수에 따라 클러스터의 수와 인식률이 좌우되는 문제점이 있다. 본 논문에서는 기존의 ART1 알고리즘을 개선하기 위하여 입력 패턴과 저장 패턴간의 Exclusive NOR의 놈(norm) 비율을 사용하는 유사성 측정 방법과 퍼지 접속 연산자를 이용하여 유사성에 따라 경계변수를 동적으로 조정하는 방법을 적용한 개선된 ART1을 제안한다. 제안된 방법에서는 1의 개수 비율이 아니라 같은 값을 가진 노드의 비율을 사용하여 유사성을 측정하고 경계 변수는 Yager의 합 접속 연산자를 사용하여 동적으로 조정한다. 제안된 방법의 성능을 확인하기 위하여 26개의 영문 패턴 분류 문제와 잡음이 있는 패턴 인식 문제를 대상으로 실험한 결과, 제안된 방법이 기존의 ART1 알고리즘 보다 경계 변수의 설정에 따라 민감하게 반응하지 않았고 인식률에서도 개선된 것을 확인하였다.

  • PDF

A Recursive Building Area Extraction Technique for Tiled Aeriel LiDAR Data (타일화된 항공 라이다 데이터로부터의 재귀적 건물영역 추출 기법)

  • Park, Chang-Hoo;Kim, Yoo-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1453-1456
    • /
    • 2011
  • 타일로 분할된 항공 라이다 데이터로 부터 데이터마이닝 기법을 이용한 지표면 분류 결과에 따라 건물을 포함하는 타일에 대해 적용할 건물영역 추출 기법을 제안한다. 본 기법은 재귀적 경계점 추출 알고리즘과 경계점 연결을 통해 경계선을 형성하고 경계선을 타일의 외벽과 연결해 건물영역의 외곽을 추출한다. 제안된 기법으로 추출된 건물 영역을 실제 항공사진과 비교하여 제시하고 재귀적 경계점 추출 알고리즘의 실행시간을 단축시키기 위해 사용된 지형정보 인덱스의 실행시간 단축 효과 분석이 제시된다.

Updating Land Cover Maps using Object Segmentation and Past Land Cover Information (객체분할과 과거 토지피복 정보를 이용한 토지피복도 갱신)

  • Kwak, Geun-Ho;Park, Soyeon;Yoo, Hee Young;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1089-1100
    • /
    • 2017
  • This paper presented a method using past land cover maps in image segmentation and training set collection for updating land cover maps. In this method, the object boundaries in past land cover maps were used for segmenting image clearly. Also, the classes of past land cover maps were used to extract additional informative training set from the initial classification result using a small number of initial training set. To evaluate the applicability of proposed method, a case study for updating land cover maps was carried out using middle-level land cover maps and WorldView-2 image in the Taean-gun, South Korea. As a result of the case study, the confusions between urban and barren, paddy/dry field and grassland in the initial classification result were reduced by adding training set. In addition, the object segmentation using boundaries of past land cover map cleared land cover boundaries and improved classification accuracy. Based on the result of case study, the proposed method using past land cover maps is expected to be useful for updating land cover maps.

News Video Shot Boundary Detection using Singular Value Decomposition and Incremental Clustering (특이값 분해와 점증적 클러스터링을 이용한 뉴스 비디오 샷 경계 탐지)

  • Lee, Han-Sung;Im, Young-Hee;Park, Dai-Hee;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.169-177
    • /
    • 2009
  • In this paper, we propose a new shot boundary detection method which is optimized for news video story parsing. This new news shot boundary detection method was designed to satisfy all the following requirements: 1) minimizing the incorrect data in data set for anchor shot detection by improving the recall ratio 2) detecting abrupt cuts and gradual transitions with one single algorithm so as to divide news video into shots with one scan of data set; 3) classifying shots into static or dynamic, therefore, reducing the search space for the subsequent stage of anchor shot detection. The proposed method, based on singular value decomposition with incremental clustering and mercer kernel, has additional desirable features. Applying singular value decomposition, the noise or trivial variations in the video sequence are removed. Therefore, the separability is improved. Mercer kernel improves the possibility of detection of shots which is not separable in input space by mapping data to high dimensional feature space. The experimental results illustrated the superiority of the proposed method with respect to recall criteria and search space reduction for anchor shot detection.

A Study on the Hangeul Pattern Classification by Using Adaptive Resonance Theory Neural Network (ART 신경회로망을 이용한 한글 유형 분류에 관한 연구)

  • Jang, Jae-Hyuk;Park, Chang-Han;NamKung, Jae-Chan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.603-606
    • /
    • 2003
  • 본 논문에서는 ART(Adaptive Resonance Theory) 신경회로망을 이용하여 한글 모음을 인식하고, 그 유형을 분류하는 방법을 제안하였다. 기존의 연구들은 단순히 문자의 선분, 획 등의 정합만을 이용하여 한글의 자소 분류에 중점을 두었다. 그러나 인식 대상 운자의 특성이 각각 다르므로 효율적인 인식을 위해서는 먼저 포괄적인 특정적 유형 분류가 필요하다. 제안된 한글 유형 분류 시스템에서는 먼저 ART 신경회로망의 문제점인 증가분류 알고리즘의 단점을 최소화할 수 있도록 비교층에 최초 활성화패턴의 크기를 기억하는 메모리를 두고 각 층간 하향틀 변화를 경계인수 값을 "1" 이내로 제한하여 이미 입력된 패턴을 다시 입력할 때, 새로운 노드의 활성화를 방지하여 비교적 입력순서에 둔감한 분류가 가능하였다. 실험 결과 제안된 시스템에서는 한글의 6형식 중 1, 3, 4, 5형식 분류는 평균 97.3% 의 분류율을 보였으나, 나머지 2, 6형식 분류는 다소 떨어지는 평균 94.9% 분류율를 보였다.

  • PDF