• Title/Summary/Keyword: 분류경계

Search Result 645, Processing Time 0.024 seconds

Improving Weak Classifiers by Using Discriminant Function in Selecting Threshold Values (판별 함수를 이용한 문턱치 선정에 의한 약분류기 개선)

  • Shyam, Adhikari;Yoo, Hyeon-Joong;Kim, Hyong-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.84-90
    • /
    • 2010
  • In this paper, we propose a quadratic discriminant analysis based approach for improving the discriminating strength of weak classifiers based on simple Haar-like features that were used in the Viola-Jones object detection framework. Viola and Jones built a strong classifier using a boosted ensemble of weak classifiers. However, their single threshold (or decision boundary) based weak classifier is sub-optimal and too weak for efficient discrimination between object class and background. A quadratic discriminant analysis based approach is presented which leads to hyper-quadric boundary between the object class and background class, thus realizing multiple thresholds based weak classifiers. Experiments carried out for car detection using 1000 positive and 3000 negative images for training, and 500 positive and 500 negative images for testing show that our method yields higher classification performance with fewer classifiers than single threshold based weak classifiers.

A study of using quality for Radial Basis Function based score-level fusion in multimodal biometrics (RBF 기반 유사도 단계 융합 다중 생체 인식에서의 품질 활용 방안 연구)

  • Choi, Hyun-Soek;Shin, Mi-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.192-200
    • /
    • 2008
  • Multimodal biometrics is a method for personal authentication and verification using more than two types of biometrics data. RBF based score-level fusion uses pattern recognition algorithm for multimodal biometrics, seeking the optimal decision boundary to classify score feature vectors each of which consists of matching scores obtained from several unimodal biometrics system for each sample. In this case, all matching scores are assumed to have the same reliability. However, in recent research it is reported that the quality of input sample affects the result of biometrics. Currently the matching scores having low reliability caused by low quality of samples are not currently considered for pattern recognition modelling in multimodal biometrics. To solve this problem, in this paper, we proposed the RBF based score-level fusion approach which employs quality information of input biometrics data to adjust decision boundary. As a result the proposed method with Qualify information showed better recognition performance than both the unimodal biometrics and the usual RBF based score-level fusion without using quality information.

Classification and evaluation of river environment using Hyperspectral images (초분광 영상정보를 활용한 하천환경 분류 및 평가)

  • Han, Hyeong Jun;Lee, Chang Hun;Kang, Joon Gu;Kim, Jong Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.423-423
    • /
    • 2019
  • RGB나 다중분광영상은 높은 공간 해상도로 인해 크기가 작은 물질의 클래스를 부여하는데 있어서는 효과적이지만 분광해상도가 낮아 다양한 종류의 지표물 분류 및 분광적으로 미세한 차이를 보이는 대상 체간의 분류에는 한계를 가지고 있다. 그러나 초분광 영상(Hyperspectral Image)은 대상 객체의 분광 반사곡선을 수백개의 연속적인 분광 파장대 영역으로 상세하게 해당 물체의 정보를 취득할 수 있는 기능을 가지고 있다. 최근 국내에서도 초분광 영상을 이용한 토지피복도 작성 및 환경 모니터링 등 다양한 분야에 적용하기 위한 연구가 시도되고 있다. 최근에는 드론과 같은 소형 UAV를 활용하여 경제적인 비용으로 시공간해상도가 높은 영상을 획득하는 것이 가능하게 되었으며 분광정보를 수집하는 영상 장비의 발전으로 드론에 탑재가 가능한 경량의 소형 초분광센서가 개발됨으로써 보다 높은 분광해상도의 영상을 취득할 수 있게 되었다. 본 연구에서는 효율적인 하천환경조사를 위해 UAV를 활용하여 고해상도 초분광 영상을 취득하였으며, 차원축소법과 분류기 적용에 따른 공간 분류 정확도 분석을 통해 하천환경에 대한 분류 및 평가를 실시하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다.

  • PDF

Solder Paste Pattern Classification Using the XOR Operation in Vision Inspection Machines (비젼 검사시스템에서 XOR연산을 이용한 납땜형상의 패턴분류)

  • Lee, Chang-Gil;Hwang, Jung-Ho;Kim, Min-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2735-2737
    • /
    • 2001
  • 비젼 검사시스템에서 기판에 존재하는 납 형상의 패턴을 분류함으로써 사전에 불량을 줄일 수 있다. 이러한 경우 대부분의 불량은 부정확한 납의 위치 및 두께로 인해 발생하게 되는데, 이러한 문제를 해결하기 위해 주어진 경계 내에 불분명하게 형성된 납의 형태 및 두께를 정상과 불량으로 분류하기 위해 무게중심점에 기초한 정합과 XOR연산을 이용한 비젼 검사시스템을 제안하였다. 제안한 비젼 검사시스템을 인쇄회로기판상의 납땜형상 패턴에 적용하여 제안한 방법의 성능을 검증하였다.

  • PDF

Reinforcement Post-Processing and Feedback Algorithm for Optimal Combination in Bottom-Up Hierarchical Classification (상향식 계층분류의 최적화 된 병합을 위한 후처리분석과 피드백 알고리즘)

  • Choi, Yun-Jeong;Park, Seung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.139-148
    • /
    • 2010
  • This paper shows a reinforcement post-processing method and feedback algorithm for improvement of assigning method in classification. Especially, we focused on complex documents that are generally considered to be hard to classify. A basis factors in traditional classification system are training methodology, classification models and features of documents. The classification problem of the documents containing shared features and multiple meanings, should be deeply mined or analyzed than general formatted data. To address the problems of these document, we proposed a method to expand classification scheme using decision boundary detected automatically in our previous studies. The assigning method that a document simply decides to the top ranked category, is a main factor that we focus on. In this paper, we propose a post-processing method and feedback algorithm to analyze the relevance of ranked list. In experiments, we applied our post-processing method and one time feedback algorithm to complex documents. The experimental results show that our system does not need to change the classification algorithm itself to improve the accuracy and flexibility.

Classification of Single-interface Surface Plasmons by Using Complex Differential Diagram (복소차분도표를 이용한 단일경계 표면플라즈몬 모드 이해)

  • Lee, Dong-Jin;Lee, Seung-Gol;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.108-113
    • /
    • 2011
  • In this paper, we propose the complex differential diagram to classify surface plasmon waveguide modes with single interface. To date, surface plasmon waveguide modes are classified using the sign change of the group velocity in the dispersion relation that describes the interrelations between the real wavenumber of the propagation direction and the photon energy. The surface plasmon waveguide modes have the wavenumbers of the direction perpendicular to that in which the wave propagates as well as of the propagation direction, so it is necessary to classify the modes using all of these wavenumbers. The complex differential diagram is a graphical representation with variables of the difference between the real component and the imaginary component of the wavenumber. Using this diagram, the specific mode classification is possible, and it is easy to comprehensively analyze the wavenumber as the function of the photon energy.

Comparison of the morphology and distribution of the genus Megaleranthis Ohwi with those of its relative genera (Ranunculaceae) (모데미풀속과 근연속들의 형태 및 분포 비교 (미나리아재비과))

  • Son, Dong Chan;Cho, Kyung Jin;Ko, Sung Chul
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.4
    • /
    • pp.315-323
    • /
    • 2011
  • To elucidate the taxonomic status of the genus Megaleranthis Ohwi, a monotype in Korea, its distribution and morphological characteristics were studied and a cluster analysis was performed. The cluster analysis showed that Megaleranthis was separately clustered from Trollius and Calathodes. Megaleranthis is morphologically different from Calathodes Hook.f. et Thomson in having petals, and from Trollius L. in having an involucre instead of a caulescent leaf under the flower and follicles with simple veins. The three genera above are distributed independently within Asia, although they can be found together at the boundaries where their distributions overlap: Trollius and Calathodes occur together between the Sichuan and Yunnan provinces in China, and Megaleranthis and Trollius can both be found on the northern edge of the Korean Peninsula. From both a morphological and a distributional viewpoint, Megaleranthis should be recognized as an independent genus different from both Trollius and Calathodes.

An Enhanced Fuzzy Single Layer Perceptron With Linear Activation Function (선형 활성화 함수를 이용한 개선된 퍼지 단층 퍼셉트론)

  • Park, Choong-Shik;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1387-1393
    • /
    • 2007
  • Even if the linearly separable patterns can be classified by the conventional single layer perceptron, the non-linear problems such as XOR can not be classified by it. A fuzzy single layer perceptron can solve the conventional XOR problems by applying fuzzy membership functions. However, in the fuzzy single layer perception, there are a couple disadvantages which are a decision boundary is sometimes vibrating and a convergence may be extremely lowered according to the scopes of the initial values and learning rates. In this paper, for these reasons, we proposed an enhanced fuzzy single layer perceptron algorithm that can prevent from vibration the decision boundary by introducing a bias term and can also reduce the learn time by applying the modified delta rule which include the learning rates and the momentum concept and applying the new linear activation function. Consequently, the simulation results of the XOR and pattern classification problems presented that the proposed method provided the shorter learning time and better convergence than the conventional fuzzy single layer perceptron.

Despeckling and Classification of High Resolution SAR Imagery (고해상도 SAR 영상 Speckle 제거 및 분류)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.455-464
    • /
    • 2009
  • Lee(2009) proposed the boundary-adaptive despeckling method using a Bayesian model which is based on the lognormal distribution for image intensity and a Markov random field(MRF) for image texture. This method employs the Point-Jacobian iteration to obtain a maximum a posteriori(MAP) estimate of despeckled imagery. The boundary-adaptive algorithm is designed to use less information from more distant neighbors as the pixel is closer to boundary. It can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The boundary-adaptive scheme was comprehensively evaluated using simulation data and the effectiveness of boundary adaption was proved in Lee(2009). This study, as an extension of Lee(2009), has suggested a modified iteration algorithm of MAP estimation to enhance computational efficiency and to combine classification. The experiment of simulation data shows that the boundary-adaption results in yielding clear boundary as well as reducing error in classification. The boundary-adaptive scheme has also been applied to high resolution Terra-SAR data acquired from the west coast of Youngjong-do, and the results imply that it can improve analytical accuracy in SAR application.

On classification model of disaster severity level based on machine learning (머신러닝 기반의 재해 강도 단계 분류모형에 관한 연구)

  • Seungmin Lee;Wonjoon Wang;Yujin Kang;Seongcheol Shin;Hung Soo Kim;Soojun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.239-239
    • /
    • 2023
  • 최근 도시화 및 기후변화에 따른 재난의 피해가 증가하고 있다. 국내 기상청에서는 호우 및 태풍에 대한 예·경보(주의보, 경보)를 전국적으로 통일된 기준(3시간, 12시간 누적강우량)에 따라 발령하고 있다. 이에 따라 현재 예·경보 기준에는 피해가 발생한 사상에 대한 지역별 특성이 고려되지 않는 문제점이 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 서울특별시, 인천광역시, 경기도의 호우 및 태풍에 대한 재해사상별 발생한 피해액 및 누적강우량을 활용하여 재해강도의 단계별 기준을 수립하고, 입력자료로 관측된 강우값을 활용하여 발생할 수 있는 재해의 발생 강도를 분류하는 모형을 개발하고자 하였다. 본 연구에서는 호우 및 태풍에 의한 재해 피해액의 분위별로 재해강도 단계(관심, 주의, 경계, 심각)를 분류하였고, 재해강도 단계에 따른 누적강우량 기준을 지자체별로 제시하였으며, 분류한 재해의 강도 단계를 모형의 종속변수로 활용하였다. 재해피해가 발생하지 않은 무강우 지속시간을 산정하여 호우 사상을 분류하였다. 지자체별로 재해 발생강도 분류 모형 개발을 위하여 머신러닝 모형 4가지(의사결정나무, 서포트 벡터 머신, 랜덤 포레스트, XGBoost)를 활용하였다. 본 연구에서 분류한 피해가 발생하지 않은 호우사상 및 피해가 발생한 사상별로 강우량, 지속시간 최대 강우량(3시간, 12시간), 선행강우량, 누적강우량을 독립변수로 입력하여 종속변수인 재해 발생 강도를 분류하였다. 각 모형별로 F1 Score를 이용한 정확도 평가 결과, 의사결정나무의 F1 Score가 평균 0.56으로 가장 우수한 정확도를 가지는 것으로 평가되었다. 본 연구에서 제시하는 머신러닝 기반 재해 발생 강도 분류모형을 활용하면 호우 및 태풍에 의한 재해에 대하여 지자체별로 재해 발생 강도를 단계별로 파악할 수 있어, 재난 담당자들의 의사결정을 위한 참고 자료로 활용될 수 있을 것으로 판단된다.

  • PDF