• Title/Summary/Keyword: 분광왜곡

Search Result 45, Processing Time 0.024 seconds

CARS에서 배경신호의 제거에 의한 분광선회복

  • 이은성
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.457-463
    • /
    • 1993
  • We investigated that the CARS signals generated from resonant or nonresonant contributions can be selectively suppressed by phase-controlled nonlinear interferometry. To control the phase of the CARS signal over a broad spectral range, a home-made phase shifting unit was used, whose thickness was automatically controlled as the wavelength of Stokes beam scaned. Using this technique, we recovered the Q-branch resonance lines of carbon monoxide and HC1 which had been distorted and buried by the nonresonant and resonant signal of propane respectively. All the spectrum measured have been normalized by reference signal which had no resonance lines over the spectral range of interest.

  • PDF

The comparative analysis of image fusion results by using KOMPSAT-2/3 images (아리랑 2호/3호 영상을 이용한 영상융합 비교 분석)

  • Oh, Kwan Young;Jung, Hyung Sup;Jeong, Nam Ki;Lee, Kwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.117-132
    • /
    • 2014
  • This paper had a purpose on analyzing result data from pan-sharpening, which have applied on the KOMPSAT-2 and -3 image. Particularly, the study focused on comparing each relative spectral response functions, which considers to cause color distortions of fused image. Two images from same time and location have been collected by KOMPSAT-2 and -3 to apply in the experiment. State-of-the-art algorithms of GIHS, GS1, GSA and GSA-CA were employed for analyzing the results in quantitatively and qualitatively. Following analysis of previous studies, GSA and GSA-CA methods resulted excellent quality in both of KOMPSAT-2/3 results, since they minimize spectral discordances between intensity and PAN image by the linear regression algorithm. It is notable that performances from KOMPSAT-2 and- 3 are not equal under same circumstances because of different spectral characteristics. In fact, KOMPSAT-2 is known as over-injection of low spatial resolution components of blue and green band, are greater than that of the PAN band. KOMPSAT-3, however, has been advanced in most of misperformances and weaknesses comparing from the KOMPSAT-2.

The identification of Raman spectra by using linear intensity calibration (선형 강도 교정을 이용한 라만 스펙트럼 인식)

  • Park, Jun-Kyu;Baek, Sung-June;Park, Aaron
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.32-39
    • /
    • 2018
  • Raman spectra exhibit differences in intensity depending on the measuring equipment and environmental conditions even for the same material. This restricts the pattern recognition approach of Raman spectroscopy and is an issue that must be solved for the sake of its practical application, so as to enable the reusability of the Raman database and interoperability between Raman devices. To this end, previous studies assumed the existence of a transfer function between the measurement devices to obtain a direct spectral correction. However, this method cannot cope with other conditions that cause various intensity distortions. Therefore, we propose a classification method using linear intensity calibration which can deal with various measurement conditions more flexibly. In order to evaluate the performance of the proposed method, a Raman library containing 14033 chemical substances was used for identification. Ten kinds of chemical Raman spectra measured using three different Raman spectroscopes were used as the experimental data. The experimental results show that the proposed method achieves 100% discrimination performance against the intensity-distorted spectra and shows a high correlation score for the identified material, thus making it a useful tool for the identification of chemical substances.

Mössbauer Study on the Variation in Magnetic Properties of CuO Induced by 57Fe Addition (57Fe 이온이 CuO에 미치는 효과에 관한 Mössbauer 분광 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.113-119
    • /
    • 2009
  • $^{57}Fe_xCu_{1-x}O$(x = 0.0, 0.02) powders were prepared by sol-gel method and their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy (MS). The crystal structure of the samples is found to be monoclinic without any secondary phases and their lattice parameters increase with increasing annealing temperature ($T_A$), which is attributed to an increase in oxygen-vacancy content. MS measurements at room temperature indicate that $Fe^{3+}$ ions substitute $Cu^{2+}$ sites and ferromagnetic phase grow with increasing $T_A$. Magnetic hyperfine and quadrupole interactions of $^{57}Fe_{0.02}Cu_{0.98}O$ ($T_A=500^{\circ}C$) in the antiferromagnetic state at 17 K have been studied, yielding the following results: $H_{hf}=426.94\;kOe$, ${\Delta}E_Q=-3.67\;mm/s$, I.S.=0.32 mm/s, ${\theta}=65^{\circ}$, ${\phi}=0^{\circ}$, and ${\eta}=0.6$.

A Study to Improve the Accuracy of Segmentation and Classification of Mosaic Images over the Korean Peninsula (한반도 모자이크 영상의 분할 및 분류 정확도 향상을 위한 연구)

  • Moon, Jiyoon;Lee, Kwang Jae
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1943-1949
    • /
    • 2021
  • In recent years, as the demand of high-resolution satellite images increases due to the miniaturization and constellation of satellites, various efforts to support users to utilize satellite images more conveniently are performed. Accordingly, the Korea Aerospace Research Institute produces and provides mosaic images on the Korean Peninsula every year to improve the convenience of users in the public sector and activate the use of satellite images. In order to increase the utilization of mosaic images on the Korean Peninsula, a study on satellite image segmentation and classification using mosaic images was attempted. However, since mosaic images provide only R, G, and B bands and processes such as image sharpening and color balancing are applied, there is a limitation that the spectral information of original images is distorted, so various indices were extracted and classified using R, G, and B bands to compensate for this. As a result of the study, the accuracy of image classification results using only mosaic images was about 72%, while the accuracy of image classification results using indices extracted from R, G, and B bands together was about 79%. Through this, it was confirmed that when performing image classification using mosaic images on the Korean Peninsula, the image classification results can be improved if the indices extracted from R, G, and B bands are used together. These research results are expected to be applied not only to mosaic images but also to images in which spectral information is limited or only R, G, and B bands are provided.

Comparative Analysis of Pre-processing Method for Standardization of Multi-spectral Drone Images (다중분광 드론영상의 표준화를 위한 전처리 기법 비교·분석)

  • Ahn, Ho-Yong;Ryu, Jae-Hyun;Na, Sang-il;Lee, Byung-mo;Kim, Min-ji;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1219-1230
    • /
    • 2022
  • Multi-spectral drones in agricultural observation require quantitative and reliable data based on physical quantities such as radiance or reflectance in crop yield analysis. In the case of remote sensing data for crop monitoring, images taken in the same area over time-series are required. In particular, biophysical data such as leaf area index or chlorophyll are analyzed through time-series data under the same reference, it can be directly analyzed. So, comparable reflectance data are required. Orthoimagery using drone images, the entire image pixel values are distorted or there is a difference in pixel values at the junction boundary, which limits accurate physical quantity estimation. In this study, reflectance and vegetation index based on drone images were calculated according to the correction method of drone images for time-series crop monitoring. comparing the drone reflectance and ground measured data for spectral characteristics analysis.

Precise correction of the copper emission spectra from the pulsed plasma jet (펄스 플라즈마 제트내에 있는 구리원자의 발광 스펙트럼 정밀 보정)

  • 김종욱;고동섭;오승묵
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.115-120
    • /
    • 2001
  • In the present study, we described in detail a precise correction method of the copper emission spectra obtained from a highpressure and high-temperature pulsed plasma-jet. The pulsed plasma-jet is initiated from an electro-thermal capillary discharge through a small orifice, and expanded rapidly into an atmosphere. In order to characterize the plasma, fundamental measurements such as the plasma excitation temperature or electron number density are essential. However those spectral lines which are directly related to the excitation temperature or electron number density may be distorted by the spectral response of the optical instruments used. Therefore, in this paper, we discuss some efforts to derive precise correction methods of the copper emission spectra obtained from the pulsed plasma-jet. a-jet.

  • PDF

A Study to Improve the Classification Accuracy of Mosaic Image over Korean Peninsula: Using PCA and RGB Indices (한반도 모자이크 영상의 분류 정확도 향상 기법 연구: PCA 기법과 RGB 지수를 활용하여)

  • Moon, Jiyoon;Lee, Kwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1945-1953
    • /
    • 2022
  • Korea Aerospace Research Institute produces mosaic images of the Korean Peninsula every year to promote the use of satellite images and provides them to users in the public sector. However, since the pan-sharpening and color balancing methodologies are applied during the mosaic image processing, the original spectral information is distorted. In addition, there is a limit to analyze using mosaic images as mosaic images provide only Red, Green and Blue bands excluding Near Infrared (NIR) band. Therefore, in order to compensate for these limitations, this study applied the Principal Component Analysis (PCA) technique and indices extracted from R, G, B bands together for image classification and compared the classification results. As a result of the analysis, the accuracy of the mosaic image classification result was about 67.51%, while the accuracy of the image classification result using both PCA and RGB indices was about 75.86%, confirming that the accuracy of the image classification result can be improved. As a result of comparing the PCA and the RGB indices, the accuracy of the image classification result was about 64.10% and 74.05% respectively. Through this, it was confirmed that the classification accuracy using the RGB indices was higher among the two techniques, and implications were derived that it was important to use high quality reference or supplementary data. In the future, additional indices and techniques are needed to improve the classification and analysis results of mosaic images, and related research is expected to increase the utilization of images that provide only R, G, B or limited spectral information.

A Study on Precision Rectification Technique of Multi-scale Satellite Images Data for Change Detection (변화탐지를 위한 인공위성영상자료의 정밀보정에 관한 연구)

  • 윤희천;이성순
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.81-90
    • /
    • 2004
  • Because satellite images include geometry distortions according to photographing conditions and sensor property, and their spatial and radiational resolution and spectrum resolution are different, it is so difficult to make a precise results of analysis. For comparing more than two images, the precise geometric corrections should be preceded because it necessary to eliminate systematic errors due to basic sensor information difference and non-systematic errors due to topographical undulations. In this study, we did sensor modeling using satellite sensor information to make a basic map of change detection for artificial topography. We eliminated the systematic errors which can be occurred in photographing conditions using GCP and DEM data. The Kompsat EOC images relief could be reduced by precise rectification method. Classifying images which was used for change detections by city and forest zone, the accuracy of the matching results are increased by 10% and the positioning accuracies also increased. The result of change detection using basic map could be used for basic data fur GIS application and topographical renovation.

The Analysis of water quality using Satellite Remotely Sensed Imagery (위성사진을 이용한 해양환경분석)

  • Shin, Bum-Shick;Kim, Kyu-Han;Pyun, Chong-Kun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1940-1944
    • /
    • 2006
  • 현지관측을 통한 지속적이고 광범위한 지역에 대해 정확하고 정밀하게 조사하여 종합적인 분석과 예측, 결정과정에 있어서, 복잡한 해양의 특성, 여러가지 조사 작업상의 난점, 경제적, 시간적으로 많은 어려움이 따르게 된다. 하지만, 위성원격탐사와 GIS를 이용한 해양환경파악기법은 현지관측에서 얻을 수 있는 제한적인 자료이외의 다량의 자료를 정성 및 정량적으로 데이터베이스화하여 분석함과 동시에 가시화함으로써 해양개발로 인해 불가피하게 초래될 수밖에 없는 환경을 보다 정확하게, 객관적으로 분석하여 장기적으로 예측할 수 있는 고도화된 환경조사 및 평가 기술이라고 할 수 있다. 본 연구에서는 고해상도 위성자료인 Landsat TM 영상과 NOAA AVHRR 자료를 이용하여 수온 및 클로로필을 추출하였으며, GIS를 이용하여 현지관측자료 및 수치해도를 기초로 공간분포도를 작성함으로서 그 외의 수질환경요소를 산출하였다. 위성영상분석은 현장조사와 같은 시점의 Landsat TM 위성영상을 획득하여, 위성 영상은 지구의 곡률과 자전, 위성체의 자세와 고도 및 속도, 그리고 센서의 기하 특성으로 인하여 실제의 지형에 대하여 기하학적 왜곡을 가지고 있으므로 지형도에서 지상기준점(Ground Control Point, GCP)를 추출하여 ERDAS Imagine으로 UTM좌표체계에 따른 기하보정(Geometric Correction)을 실시하였으며, 동일한 시기의 NOAA AVHRR영상을 데이터로 처리하여 수온자료를 추출하였다. 표층수온과 현장관측에 의한 클로로필을 수치 지도화하기 위하여 열적외선영역인 TM band 6의 분광특성값(Digital Number)과 동일한 위치의 수온자료를 기초로 회귀분석을 실시함으로써 수온추출 알고리즘을 도출하여, 분석데이터의 신뢰도를 검증하였으며, 수온, 클로로필, 투명도 등을 위성원격탐사 자료와 GIS를 이용하여 공간분석을 실시하고, 공간분포도를 작성함으로써 대상해역의 해양환경을 파악하였다. 본 연구결과, 분석된 위성자료가 현장조사에 의한 검증이 이루어지지 않을 경우, 영상자료분석을 통한 표층수온 추출은 대기 중의 수증기와 에어로졸에 의한 계산치의 오차가 반영되기 때문에 실측치 보다 낮게 평가 될 수 있으므로, 반드시 이에 대한 검증이 필요함을 알 수 있었다. 현지관측에 비해 막대한 비용과 시간을 절약할 수 있는 위성영상해석방법을 이용한 방법은 해양수질파악이 가능할 것으로 판단되며, GIS를 이용하여 다양하고 복잡한 자료를 데이터베이스화함으로써 가시화하고, 이를 기초로 공간분석을 실시함으로써 환경요소별 공간분포에 대한 파악을 통해 수치모형실험을 이용한 각종 환경영향의 평가 및 예측을 위한 기초자료로 이용이 가능할 것으로 사료된다.

  • PDF