• Title/Summary/Keyword: 북한한류계수

Search Result 8, Processing Time 0.03 seconds

CHARACTERISTICS AND ORIGIN OF THE COLD WATER MASS ALONG THE EAST COAST OF KOREA (한국 동해안에 출현하는 냉수괴의 특성과 기원)

  • Kim, Cheol Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.73-83
    • /
    • 1983
  • To serch the origin of the cold water mass along the east coast of Korea its characteristics are inrestigated based upon Cooperative Study of Kuroahio and Fisheries Research and Development Agency data. In the southwestern part of the Japan Sea the North Korean Cold Water sinks at the front and flows southwards on top of the Japan Sea Proper Water. it is found that the sunken North Korean Cold Water il high in the content of dissolved oxygen and less saline compared with the Japan Sea Proper Water. It is highly likely that the cold water mass off the Jugbyeon-Chuksan coast in summer il the North Koreah Cold Water and not upwelled Japan Sea Proper Water. It os shown that the Notth Korean cold Water Flows strongly in summer and its scuthern limit is generally off Chuksan-Janggigab and occasionally off Gampo as observed in 1973.

  • PDF

Characteristics of Acoustic Environment in three regions along the Korean East Coast (한반도 연안 3개 해역에서의 수중음향환경 특성)

  • Park S.W.;Yun J. Y.;Kim K.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.417-420
    • /
    • 2004
  • 동해는 크게 북한한류계수의 지배적인 영향을 받는 북부해역, 동한난류계수의 지배적인 영향을 받는 남부해역과 이들이 만나서 극전선이 형성되는 중부해역 등 세 해역으로 구분할 수 있고 이러한 환경에서의 해군 함정의 대잠탐지환경은 같은 동해라 하더라도 크게 다를 것으로 예상된다. 본 연구에서는 저주파 거리종속 모델인 RAM 을 이용하여 평균해황 하에서 각 해역에서의 전달손실 값을 비교하였다. 음원을 수심 100m, 수신기 수심을 10m와 100m로 설정하여 실험을 하였으며 아울러 평균해황이 아닌 일정시기에 관측한 순간해황 자료를 통한 모델결과도 같이 분석하였다. 실험결과, 연안에 위치한 음원으로부터 음파가 외해로 전달됨에 따라 냉난수대간의 수온전선 영향을 받게되며 수온전선을 통과하면서 남부해역에서의 음파는 중부 및 북부해역 보다 난류의 영향을 더 많이 받게된다. 따라서 북부보다는 중부해역이, 중부보다는 남부해역에서의 전달손실값이 더 커지게 된다. 특히 이러한 경향은 북한한류계수가 발달하여 난류와 수온전선이 형성되는 8월에 더 큰 것으로 나타났다.

  • PDF

Characteristics and long term variation trend of water mass in the coastal part of East Sea, Korea (동해연안 수괴의 특성과 장기변동 추이)

  • Yoon, Yi-Yong;Jung, So-Jung;Yoon, Sang-Chul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.59-65
    • /
    • 2007
  • Rapid variation of coastal ecosystem in the East Sea of Korea, such as fishery resource variation and subtropical chang of bentic flora, accordong to the global warming are actually noticed. In this study we try to identify the characterics of water mass existing in this coastal area and to consider the variation of their physical and chemical properties using data of temperature, salinity and dissolved oxygen obtained by National Fisheries Research & Development Institute from 1960 to 2005. The temperature of all water mass rise during last 45 years; the rise of North Korea Cold Water temperature (about $2.33^{\circ}C$) is 1.5 times higher than that of Tsushima warm water (about $1.6^{\circ}C$), and the temperature rise of Tsushima Surface Water, directly affected by climate chang is $2.57^{\circ}C$, higher than the atmospheric temperature rise during same period, indicating that subtropical change makes progress more rapidly in the coastal marine ecosystem than in the land ecosystem. Otherwise, the salinity in the surface water decrease $0.29\%_{\circ}$ during last 45 years due to the rising trend of rainfall with atmospheric temperature. The dissolved oxygen concentration in the all water mass make a decreasing trend. Specially for the North Korea Cold Water, the dissolved oxygen concentration diminish 0.021 mg/l per year and the decrease in the East Sea Proper Water indicate a change of inner water circulation system.

  • PDF

CHEMICAL OCEANOGRAPHIC ASPECT OF THE COLE WATER MASS IN OFFSHORE OF THE EAST COAST OF KOREA (한국 동해안 냉수괴의 해양화학적 고찰)

  • PARK Chung Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.49-54
    • /
    • 1978
  • The cold water mass appeared in offshore of the east coast of Korea in summer season was studied in aspect of chemical oceanography. Such a typical relationship between phosphate and dissolved oxygen as shown in the upwelling regions could not be found in the east coast except around the Kampo coast, southern part of the east coast. It is possible to isolate the North Korean Cold Water from tile proper water of tile Japan Sea by using $\sigma_t-O_2$ diagram. The origin of the cold water mass in offshore of the east coast of Korea in summer is not mainly due to the development of upwelling of the proper water of the Japan Sea but thesouthwardflolvingoftheNorthKoreanCold Water.

  • PDF

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -III. Chemical Characteristics of Water Masses in the Polar Front Area of the Central Korean East Sea- (한반도 근해의 해류와 해수특성 -III. 한국 동해 중부 극전선역에 출현하는 수괴의 화학적 특성-)

  • YANG Han-Soeb;KIM Seong-Soo;KANG Chang-Geun;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.3
    • /
    • pp.185-192
    • /
    • 1991
  • The vertical distribution and chemical characteristics of water masses were measured along two south-north transects in the polar front region of the central Korean East Sea. In February, a thermocline was present at depth between 50m and loom at the southern sites of a landward A-transect, and its depth was gradually deepened northward. At an outside B-transect, a thermocline was observed at significantly deep depth of 300m to 400m at two northern stations(Stn. 10 and 11), though the depth of the southward stations was nearly identical to that at the northward stations on a A-transect. In September, there were vertically more various water masses, i.e. the Tsushima Warm surface water(TWSW) or more than $20^{\circ}C$, the Tsushima Middle water(TMW) with a range of $12{\~}17^{\circ}C$, the North Korea Cold Water(NKCW) with $1{\~}7^{\circ}C$ temperature, the Japan Sea Proper Water(JSPW) of less than $1^{\circ}C$, and the mixed water. The North Korea Cold Water could be distinguishable from the other waters, especially from the mixed water of the Tsushima Middle Water and the Japan Sea Proper Water by the pattern of $T-O_2$ diagram. For instance, the North Korea Cold Water had higher oxygen by $1{\~}2ml/l$ than those in the mixed water, although both the two water masses ranged $1{\~}7^{\circ}C$ in water temperature. AOU value was the highest in the JSPW and the lowest in the TWSW. Also, AOU indicated a nearly linear and negative correlation with water temperature. However, AOU data for two masses, the NKCW and the TMW, in September departed remarkably from a regression line. Moreover, the ratio of $$\Delta P/\Delta AOU)$ in September was about $0.45{\mu}g-at/ml$ and higher than the value observed in the open sea. This high value could be elucidated by two factors; intrusion of the NKCW with high oxygen and molecular diffusion of dissolved oxygen from the surface into the lower layer. AOU would be a useful tracer for water masses in the polar front area of the Korean East Sea.

  • PDF

PLANKTON STUDY IN THE SOUTHEASTERN SEA OF KOREA(I) - Phytoplankton Distribution in September, 1981- (韓國 東南 海域의 플랑크톤 硏究(I) -1981年 9月의 植物플랑크톤 分布-)

  • Shim, Jae Hyung;Lee, Won, Ho
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.91-103
    • /
    • 1983
  • Qualitative and quantitative phytoplankton samples collected during a cruise in the southeastern sea of Korea in September 1981, were analysed. A total of 185 species of phytoplankters were identified in the present study. Of the numbers 14 species of diatoms and 56 dinoflagellate forms were found. The rest were 3 silicoslagellate forms, a cryptomonad and a euglenoid each. On the bases of the analyses of the phytoplankton communities, two vegetation areas were recognized. It is demonstrated that the extent of each vegetation area largely depends on hydrographical features. In southeastern coastal waters, the vegetation was fairly rich, and consisted of small celled diatoms and minute flagellates. In the northern part of the area, abundant phytoplanktons were present consisting of various diatoms and dimofalgellates. The size of standing stock of phytoplankton was compared with hydrography and the specific composition of phytoplankton. The importance of mixing between the Tsushima warm current water and North Korean cold water in distributing phytoplankton stocks was stressed.

  • PDF

Temporal and spatial distributions of heat fluxes in the East Sea(Sea of Japan) (東海熱收支 의 時.空間的인 分布)

  • 박원선;오임상
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.91-115
    • /
    • 1995
  • Air-sea heat fluxes in the East Sea were estimated from the various ship's data observed from 1961 to 1990 and the JMA buoy #6 data from 1976 to 1985. The oceanic heat transport in the sea was also determined from the fluxes above and the heat storage rate of the upper layer of 200m from the sea surface. In winter, The incoming solar radiation is almost balanced with the outgoing longwave radiation. but the sea loses her heat through the sea surface mainly due to the latent and sensible heat fluxes. The spatial variation of the net surface heat flux is about 100 Wm/SUP -2/, and the maximum loss of heat is occurred near the Tsugaru Strait. There are also lots of heat losses in the southern part of the East Sea, Korea Strait and Ulleung Basin. Particularly, the heat strong loss in the south-western part of the sea might be concerned with the formation of her Intermediate Homogeneous Water. In summer, the sea is heated up to about 120∼140 Wm/SUP -2/ sue to strong incoming solar radiation and weak turbulent heat fluxes and her spatial variation is only about 20 Wm/SUP -2/. The oceanic heat flux is positive in the southeasten part f the sea and the magnitude of the flux is larger than that of the net surface heat flux. This shows the importance of the area. In the southwestern part of the sea, however, the oceanic heat flux is negative. This fact implies cold water inflow, the North Korean Cold Water. The sigh of net surface heat flux is changed from negative to positive in March and from positive to negative in September. The heat content in the upper surface 200 m from the sea surface reaches its minimum in March and maximum in October. The annual variation of the net surface heat flux is 580 Wm/SUP -2/ in southwestern part of the sea. The annual mean values of net surface heat fluxes are negative, which mean the net heat transfer from the sea to the atmosphere. The magnitude of the flux is about 130 Wm/SUP -2/ near the Tsugaru Strait. The net surface fluxes in the Korea Strait and the Ulleung Basin are relatively larger than those of the rest areas. The spatial mean values of surface heat fluxes from 35$^{\circ}C$ to 39$^{\circ}$N are 129, -90, -58, and -32 Wm/SUP -2/ for the incoming solar radiation, latent hear flux, outgoing longwave radiation, and sensible heat flux, respectively.

  • PDF