• Title/Summary/Keyword: 북북동방향

Search Result 76, Processing Time 0.029 seconds

Geology and Fracture Distribution in the Vicinities of the Cheonseong and Jeongjok Mountains (천성산과 정족산 일원의 지질과 단열 분포)

  • Son, Moon;Kim, Jong-Sun;Hwang, Byoung-Hoon;Ryoo, Chung-Ryul;Ock, Soo-Seok;Hamm, Se-Yeong;Kim, In-Soo
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.107-127
    • /
    • 2003
  • After detailed geological mapping, structural and fracture-density data were collected and analyzed in the vicinity of Cheonseong and Jeongjok Mts., Gyeongsangnam-do. A extensive dextral strike-slip fault (Beopgi Fault) Parallel to Yangsan and Dongrae Faults, a dextral-transtensional-NW fault, and a few intermittent faults have been found in the study area. Based on strike and frequency, fracture system has been divided into three sets such as NNE-trending J1 ($NS-40^{\circ}E$), WNW-trending J2 ($N50^{\circ}-80^{\circ}W$), and ENE-trending J3 ($N60^{\circ}-90^{\circ}E$). According to analysis of fracture density, it is revealed as follows: (a) Jl is the combination of Y-, P-, and R-shear fractures due to the dextral strike-slip of the Beopgi Fault. (b) J2 is the preexisted fracture zone conducting the intrusion of granite. Two tensional fractures dipping to NNE and SSW respectively have been induced by intrusion of granite and followed crustal uplift. (c) J3 is the tensional fracture developed between Yangsan and Dongrae Faults having NNE trend and dextral strike-slip sense. This study aims to reduce environmental impact and insure stability of underground facilities and tunnels.

Geological Structures and Extension Mode of the Southwestern Part(Bomun Area) of the Miocene Pohang Basin, SE Korea (한반도 동남부 마이오세 포항분지 남서부(보문지역)의 지질구조와 확장형식)

  • Song, Cheol Woo;Kim, Min-Cheol;Lim, Hyewon;Son, Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.235-258
    • /
    • 2022
  • We interpreted the evolutionary history of the southwestern part of the Pohang Basin, the largest Miocene basin in the southeastern part of the Korean Peninsula, based on the detailed geological mapping and analysis of the geological structures. The southwestern part of the Pohang Basin can be divided into the Bomun Domain in the west and Ocheon Domain in the east by an NNE-trending horst-in-graben. These two domains have different geometries and deformation histories. The Bomun Domain was rarely deformed after the incipient extension of the basin, whereas the Ocheon Domain is an area where continued and overlapped deformations occurred after the basin fill deposition. Therefore, the Bomun Domain provides critical information on the initial extension mode of the Pohang Basin. The subsidence of the Bomun Domain was led by the zigzag-shaped western border fault that consists of NNE-striking normal and NNW-striking dextral strike-slip fault segments. This border fault is connected to the Yeonil Tectonic Line (YTL), a regional dextral principal displacement zone and the westernmost limit of Miocene crustal deformation in SE Korea. Therefore, it is interpreted that the Pohang Basin was initially extended in WNW-ESE direction as a transtensional fault-termination basin resulting from the movement of NNE-striking normal and/or oblique-slip faults formed as right-stepover in the northern termination of the YTL activated since approximately 17-16.5 Ma. As a result, an NNE-trending asymmetric graben or half-graben exhibiting an westward deepening of basin depth was formed in the Bomun Domain. Afterward, crustal extension and deformation were migrated to the east, including the Ocheon Domain.

Flow Path of Choosan Spring in Nari Basin, Ulleung Island, South Korea (울릉도 나리분지 추산용천수의 유동 경로)

  • Byeongdae Lee;Min Han;Dong-Hun Kim;Byong-Wook Cho;Chung-Ryul Ryoo
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.207-216
    • /
    • 2024
  • This study clarified the flow path of Choosan Spring, Nari Basin, Ulleung Island, South Korea. The orientations of faults and fractures developed on the inner edge of the caldera were identified as major factors affecting the flow path. The main flow paths include fracture zones oriented N-S and E-W. The spring also flows in a NE or NNE direction under the influence of the irregular shape of the caldera, which slopes to the NNE. Using Entrobacteriaceae species as tracers, it was found that Nari groundwater flows toward Choosan Yongchulso. However, the small number of water samples used in the analysis limits our understanding of the flow path from Sungin Valley to Nari Basin and Choosan Yongchulso.

Geological structure of the Ogcheon belt in the Buunnyeong area, Mungyeong, Korea (문경 부운령지역에서 옥천대의 지질구조)

  • ;原郁夫;宮本隆實
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.82-94
    • /
    • 2001
  • The main geological structure of the Ogcheon belt in the Buunnyeong area, Mungyeong, which consists of three stratigraphic sequences, Joseon and Pyeongan Supergroups and Daedong Group, is characterized by the development of ESE-vergence structural unit (Dangok unit) and WNW-vergence structural units (Samsil and Bugongni units) onto an autochthonous unit (Buunnyeong unit). Three phases of deformation are recognized in this area. The lent phase of deformation coourred under the WNW-ESE compression, forming an upright-open fold (Buunnyeong-I fold) with NNE axial trend in the Buunnyeong unit. The second phase of deformation also under the WNW-ESE compression formed the Dangok, Samsil and Bugongni units, resulting in the further closing of the Buunnyeong-I open fold, the elongation of pebbles in the conglomerate rocks of a basal sequence of the Daedong Group, recumbent folds (Buunnyeong-II fold) and drag folds (Dangok fold) with NNE axial trend in the Buunnyeong and Dangok units, respectively. The third phase of deformation formed kink folds with its axis p1unging subvertically. The first and second phases of deformation took place before and after the deposition of the Daedong Group of the Upper Triassic -Lower Jurassic, respectively. These first two deformation events, which occurred under the same WNW-ESE compressional field, produced the regional NNE trend of geological structure in the Joseon and Pyeongan Supergroups of this area.

  • PDF

울산광역시 울주군 삼남면 상천리와 가천리 일원의 지질구조와 제4기단층의 발달 특성

  • 류충렬;최위찬;최성자
    • Proceedings of the KSEG Conference
    • /
    • 2002.04a
    • /
    • pp.193-200
    • /
    • 2002
  • 울산광역시 울주군 삼남면 가천리와 상천리 일원에 발달하는 양산단층대 중남부의 발달특성과 제4기단층을 기재한다. 이 지역에는 중생대 백악기의 퇴적암과 화강암의 경계부 근처에 양산단층대의 주단층대와 부단층대로 확인되는 대규모의 단층파쇄대가 북북동-서남서 내지 남-북의 주향에 거의 수직으로 발달하고 있다. 단층조선은 수평에 가까우며 단층대내의 구조에 의하면, 주로 우향의 주향이동운동이 우세하다. 한편, 상천리와 가천리에는 이들 기반암과 제4기의 하성 사력층의 경계부 부근에서 제4기단층이 2조 발달하고 있다. 이들은 가천 제1단층과 가천 제2단층으로 기존의 양산단층대 일부가 제4기에 재활동한 것으로, 북북동 방향의 주향에 동측으로 고각의 경사를 보인다 단층조선은 거의 수평이며, 제4기 역들이 단층끌림에 의해 배열된 상태나 단층엽리내의 구조에 의하면 우향의 주향이동성운동이 우세하다.

  • PDF

Engineering Geological Geotechnical Characteristics of Newly Constructed Road between the Yangsan Fault and the Dongrae Fault (양산단층과 동래단층 사이를 통과하는 지방도의 지질공학적 특성 연구)

  • 이병주;선우춘
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.193-205
    • /
    • 2003
  • Fine grained granite, porphyritic granite and biotite granite together with intruded and extruded andesitic rocks are distributed in the study area which is bounded by the Yangsan and Dongrae faults. A new domestic road is being constructed along the area between the two major faults. The NNE trending Bupki fault and NE trending Myungkog fault are also developed within the area cross the road. The sheeting joints with dips of less than 30 degrees are only developed in the area of granite outcrop. High angle joints can be divided into 3 sets, such as, NE trending, NW trending and nearly EW trending joints. The joint space is mostly more than 20cm and the joint compressive strength is more than 100 MPa. These data show that even though the study area is situated between large faults, the ground condition is good because the damage zone of the Yangsan and Dongrae faults is relatively narrow.

불연속면의 방향성과 지하수 유동과의 상관성 연구

  • Kim, Byeong-U;Jeong, Sang-Yong;Gang, Dong-Hwan;Kim, Seong-Uk
    • Proceedings of the KSEG Conference
    • /
    • 2005.04a
    • /
    • pp.157-164
    • /
    • 2005
  • BIPS와 Televiewer를 이용하여 10개의 지하수 관측공에서 획득된 1,591개 불연속면을 분석하여 지하수 유동과의 관계를 비교${\cdot}$분석하였다. 연구지역 내의 지형은 산계가 잘 발달된 계곡형 지형이며, 수계의 발달은 매우 미약하다. 연구지역 주변에는 북북동-남남서 방향의 양산단층과 동래단층이 발달되어 있으며, 연구지역 내에는 EW방향의 선구조도 발달되어 있다. 지하수공내에서 조사된 불연속면의 주 방향은 위성사진에서 판독된 선구조의 방향과 대부분 일치한다. 지구통계기법을 이용하여 작성된 지하수위 등고선도에서 추정된 지하수 유동방향과 유향${\cdot}$유속기에서 측정된 지하수 유향은 거의 일치하지만, 단열암반에 발달된 불연속면의 방향과 지하수 유동방향은 2가지로 해석되었다. 첫째는 단열암반에 발달된 불연속면의 방향과 지하수 유동방향이 잘 일치하는 경우(BH-01, 03, 04, 12공), 둘째는 불연속면의 방향과 지하수 유동방향이 잘 일치하지 않는 경우(BH-02, 05, 07, 11) 이다. 지하수 유동방향이 불연속면의 방향과 일치하지 않는 경우는 지형의 변화에 더 영향을 받는 것으로 나타났다. 따라서 단열암반 내에서 지하수의 유동은 단열의 방향성에 영향을 받지만, 지형의 특성에도 큰 영향을 받는다.

  • PDF

Geometrical Interpretation on the Development Sequence and the Movement Sense of Fractures in the Cheongsong Granite, Gilan-myeon Area, Uiseong Block of Gyeongsang Basin, Korea (경상분지 의성지괴 길안면지역에서 청송화강암의 단열 발달사 및 운동성에 대한 기하학적 해석)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.180-193
    • /
    • 2006
  • The Gilan area in the central-northern part of Uiseong Block of Cretaceous Gyeongsang Basin is composed of Precambrian metamorphic rocks, Triassic Cheongsong granite, Early Cretaceous Hayans Group, and Late Cretaceous-Paleocene igneous rocks. In this area, the faults of various directions are developed: Oksan fault of $NS{\sim}NNW$ trend, Gilan fault of NW trend, Hwanghaksan fault of WNW trend, and Imbongsan fault of EW trend. Several fracture sets with various geometric indicators, which determine their relative timing (sequence and coexistence relationships) and shear sense, we well observed in the Cheongsong granite, the basement of Gyeongsang Basin. The aim of this study is to determine the development sequence of extension fractures and the movement sense of shear fractures in the Gitan area on the basis of detailed analysis of their geometric indicators (connection, termination, intersection patterns, and cross-cutting relations). This study suggests that the fracture system of the Gilan area was formed at least through seven different fracturing events, named as Pre-Dn to Dn +5 phases. The orientations of fracture sets show (W) NW, NNW, NNE, EW, NE in descending order of frequency. The orientation and frequency patterns are concordant with those of faults around and in the Gilan area on a geological map scale. The development sequence and movement sense of fracture sets are summarized as follows. (1) Pre-Dn phase: extension fracturing event of $NS{\sim}NNW$ and/or $WNW{\sim}ENE$ trend. The joint sets of $NS{\sim}NNW$ trend and of $WNW{\sim}ENE$ trend underwent the reactivation histories of sinistral ${\rightarrow}$dextral${\rightarrow}$sinistral shearing and of (dextral${\rightarrow}$) sinistral shearing with the change of stress field afterward, respectively. (2) Dn phase: that of NW trend. The joint set experienced the reactivations of sinistral${\rightarrow}$dextral shearing. (3) Dn + 1 phase: that of $NNE{\sim}NE$ trend. The joint set was reactivated as a sinistral shear fracture afterward. (4) Dn +2 phase: that of $ENE{\sim}EW$ trend. (5) Dn +3 phase: that of $WNW{\sim}NW$ trend. (6) Dn+4 phase: that of NNW trend. The joint set underwent a dextral shearing after this. (7) The last Dn +5 phase: that of NNE trend.

Geological Structure around Andong Fault System, Pungcheon-myeon, Andong, Korea (안동시 풍천면 안동단층계 주변의 지질구조)

  • Kang, Ji-Hoon;Lee, Duck-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.83-94
    • /
    • 2008
  • The Pungcheon-myeon, Andong, consists mainly of Precambrian metamorphic rocks, Jurassic igneous rocks, Cretaceous sedimentary rocks (Hasandong, Jinju and Iljik Formations) and Cretaceous igneous rocks (gabbroic rocks, dykes), in which several major faults are developed; Andong fault of ENE trend, which is the boundary fault of the Cretaceous Gyeongsang Basin and the Precambrian-Jurassic basement (Yeongnam Massif), Namhu fault parallel to it, Maebong fault of NNW direction, bow-shaped Gwangdeok fault of ENE direction which is convex toward SSE direction, and Hahoe fault of NNE direction. This paper is researched the geological structures around these major faults by means of the detailed geometric analysis on beddings, joints, faults and drag folds. As a result, a reverse slip faulting of top-to-the SSE movement accompanied with a regional drag folding is recognized from the arrangement of bedding poles measured around the Gwangdeok and Hahoe faults at its northeastern extension, and a zone of Gwangdeok drag fold of 150-300 m width, which is wider at the central and eastern parts of Gwangdeok fault and narrower at its western part and Hahoe fault, is also defined. It indicates that the Hahoe and Gwangdeok faults are a single fault and their movements are coeval unlike the results of earlier reasearchers. And, In this area are recognized two types of faults [(E)NE${\sim}$EW(fault I), WNW${\sim}$NNW (fault II), trending faults] and four types of joints [EW (I), (N)NW (II), NNE (III), NE (IV) trending joints]. These fractures were formed at least through four different events, named as Dn to Dn+3 phases. (1) Dn phase; the formation of joint (I) (Gwangdeok joint) and the intrusion of acidic dykes of EW trend under the compression of EW direction. (2) Dn+1 phase; the formations of joint (II) (Maebong joint), lens-shaped boudinage of acidic dykes, oblique-slip reverse fault (Fault I-Gwangdeok fault) under the compression of (N)NW direction, and the formation of regional zone of Gwangdeok drag fold accompanying the Gwangdeok faulting. (3) Dn+2 phase; those of joint (III), Fault II (Maebong fault) by dextral strike-slip movement of Maebong joint under the compression of NNE direction, and the extension cutting of Dn+1 structures due to the Maebong faulting. (4) Dn+3 phase; the jointing (IV) and the reactivation of Fault II as oblique-slip type with predominant dextral motion which took place under the compression of NE direction. It also suggests that the Maebong fault is not a tear fault deveolped during thrust tectonics of the Andong and Gwangdeok faults but is a post-fault during different tectonic event.