• 제목/요약/키워드: 북마킹

검색결과 18건 처리시간 0.041초

소셜 북마킹 시스템의 이용자 행위 패턴에 관한 연구 (A Study About User Pattern of Social Bookmarking System)

  • 조현;최준현;김성희
    • 인터넷정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.29-37
    • /
    • 2011
  • 최근 들어 웹의 진화가 급속하게 진전되면서 사용자가 직접 참여하는 유형의 서비스들이 활발하게 보급되었다. 사용자들은 네트워크 공간상에서 여러 종류의 콘텐츠를 공유하며 의견을 교환한다. 이러한 서비스의 대표적인 예로 소셜 북마킹 사이트를 들 수 있다. 사이트의 이용자들은 웹 사이트를 북마킹하는 과정에 있어서 타인의 북마킹 내역 및 태그 정보를 공유하며태그를 생산하게 되는데 이를 협업적 태깅이라고 한다. 본 연구에서는 최근 활발하게 이용되는 소셜 북마킹 및 협업적 태깅에 대한 실증적인 분석을 수행하였다. 분석 결과 분석 결과 전체 이용자 중에서 아주 소수만이 북마킹 활동을 활발하게 수행하며, 소수의 사이트와 태그가 다수의 사용자에 의해 이용되었다. 24%의 사용자가 총 80%에 해당하는 태깅을 수행하였으며, 75%의 사이트와 81%의 태그가 3번 이하로 태깅되었다. 사용자에 따라서 북마킹 활동에도 차이가 있었으며, 가장 이른 시점에 부여된 태그가 다수의 동의를 얻었다. 특정 사이트의 태그 구성 비율은 점차 수렴해감을 확인할 수 있었다. 본 연구결과가 향후 소셜 북마킹 시스템의 발전에 도움이 시사점을 제공한다고 기대한다.

소셜 북마킹 시스템에서의 북마크와 태그 정보를 활용한 웹 콘텐츠 랭킹 알고리즘 (A Web Contents Ranking Algorithm using Bookmarks and Tag Information on Social Bookmarking System)

  • 박수진;이시화;황대훈
    • 한국멀티미디어학회논문지
    • /
    • 제13권8호
    • /
    • pp.1245-1255
    • /
    • 2010
  • 현재 웹 2.0 환경에서의 핵심 기술 중 하나는 사용자가 관심 있는 웹페이지를 태깅 및 북마킹 하는 소셜 북마킹 기술이다. 소셜 북마킹은 웹 콘텐츠에 태깅된 북마크 정보 및 태깅 결과를 기반으로 검색, 분류, 공유를 통해 효율적인 정보 제공을 주목적으로 하고 있다. 그러나 현재 소셜 북마킹 시스템들은 웹 콘텐츠의 사용자들의 관심 정도를 측정할 수 있는 북마크 수 및 검색과 분류를 목적으로 하는 태그 정보를 각각 독립적으로 검색에 활용하는 방식을 사용하고 있다. 이는 소셜 북마킹 시스템에서 중요한 특징을 가지는 북마크와 태깅 기술을 효율적으로 활용하지 못하는 결과가 된다. 이에 본 연구에서는 태그 클러스터링을 통한 연관 태그 추출에 관한 선행연구를 기반으로, 북마크 정보와 혼합하기 위한 웹 콘텐츠 랭킹 알고리즘을 제안하였다. 또한 제안 알고리즘의 효율성 분석을 위해 기존 검색 방법론들과의 비교평가를 시행하였으며, 그 결과 본 연구의 핵심적인 특징인 북마크와 태그 정보를 함께 활용한 소셜 북마크 시스템이 기존 시스템보다 효율적인 검색결과를 도출하였다.

소셜 네트워크의 태그와 시간 정보를 반영한 추천 알고리즘 (A recommendation algorithm which reflects tag and time information of social network)

  • 조현;홍종현;최준연;김성희
    • 인터넷정보학회논문지
    • /
    • 제14권2호
    • /
    • pp.15-24
    • /
    • 2013
  • 최근 다수의 소셜 네트워크가 빠르게 확산되었다. 그 중에서도 소셜 북마킹 시스템은 가장 널리 사용되는 것 중 하나이다. 소셜 북마킹 시스템은 사용자들이 온라인 자원에 태그를 부여해서 공유하고 관리할 수 있는 환경을 제공한다. 소셜 북마킹 시스템에서는 품질향상을 위해 태그와 시간 정보를 반영하여 개인에 특화된 추천을 할 수 있다. 본 논문에서는 가중치와 유사도 측정 과정에서 태그와 시간을 반영한 추천 시스템을 제안하였다. 또한 제안 방법론을 실제 데이터에 적용하였고, 실험결과 태그와 시간 정보를 함께 반영하였을 때 추천 성능이 향상됨을 확인하였다.

대학 수업에서 소셜 북마킹의 활용: 학생 인식 및 행태를 중심으로 (Social Bookmarking Use in University Courses: Student Perceptions and Behaviors)

  • 박옥남;정영숙
    • 정보관리학회지
    • /
    • 제26권2호
    • /
    • pp.65-82
    • /
    • 2009
  • 본 연구에서는 대학강좌에서 학생들의 소셜 북마킹 도구에 대한 인식 및 사용 행태를 분석하였다. 소셜 북마킹의 가치에 대한 최근 활발한 논의에도 불구하고 실제 이용자들이 어떻게 소셜 북마킹을 사용하는가에 대해서는 알려진 바가 많지 않다. 본 연구는 수업에서 학생들의 소셜 북마킹 도구인 딜리셔스 사용 행태와 인식을 바탕으로 소셜 북마킹이 제시하는 가치들이 실제에서 어떻게 나타나는지를 조사하였다. 학생들은 태깅, 기술, 네트워크의 기능을 소극적으로 사용하고 있었다. 이용자는 여전히 개인 정보 수집 및 관리의 도구로써 소셜 북마킹을 사용하고 있었으며, 소셜 북마킹 도구는 정보의 사용 및 재사용성은 향상시키고 있었으나 소셜 북마킹 도구가 지향하는 협력기반 정보공유, 협력기반 커뮤니티 구축 및 도메인 검색의 가치는 충분히 실현되지 못하고 있는 것으로 나타났다.

연관 태그 및 유사 사용자 가중치를 이용한 웹 콘텐츠 랭킹 시스템 (A Web Contents Ranking System using Related Tag & Similar User Weight)

  • 박수진;이시화;황대훈
    • 한국멀티미디어학회논문지
    • /
    • 제14권4호
    • /
    • pp.567-576
    • /
    • 2011
  • 웹 2.0의 발전에 따라 다양한 기술들이 제공되며 그 중 대두되는 기술로 사용자가 관심 있는 웹페이지를 태깅 및 북마킹하는 소셜 북마킹 기술이다. 그러나 현재 소셜 북마킹 시스템들은 웹 콘텐츠의 중요 정보인 다른 사용자들의 관심 정도를 측정할 수 있는 북마크 수 및 검색과 분류를 목적으로 하는 태그 정보를 각각 독립적으로 검색에 활용하며 또한, 다른 사용자들과의 유사도를 반영하지 못하여 소셜 북마킹 시스템의 특징을 반영하지 못한 검색결과를 도출하고 있는 실정이다. 이에 본 연구에서는 선행 연구를 기반으로 태그 클러스터링을 통한 연관 태그 추출 및 북마크 정보와 다른 사용자의 유사도를 혼합한 웹 콘텐츠 랭킹 알고리즘을 제안하였다. 또한 제안 알고리즘의 효율성 분석을 위해 기존 검색 방법론 및 선행 연구의 방법론과의 비교평가를 시행하였으며, 그 결과 본 연구의 핵심적인 특징인 태그 정보 및 북마크 수와 유사도를 활용한 방법이 기존 방법론보다 효율적인 결과를 도출하였다.

소셜 북마킹 서비스의 태그를 이용한 개인화 콘텐츠 (Personalized Contents using the Tags of the Social Bookmarking Service)

  • 한주현;정문열
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.267-272
    • /
    • 2009
  • 웹 2.0 이라 불리는 현 웹의 패러다임은 개방, 공유, 참여로 압축하여 말할 수 있다. 이 속에서는 사용자의 참여와 공유로 콘텐츠가 생산 또는 재생산된다. 이러한 콘텐츠는 사용자의 관심을 반영하기 때문에 사용자가 어떠한 콘텐츠를 만들어 냈는지, 수집했는지 등을 분석하면 사용자의 관심 범주를 추출할 수 있다. 본 논문에서는 사용자가 소셜 북마킹 서비스를 이용하며 생성한 태그를 바탕으로 사용자의 관심 범주를 추출하여 이를 통해 개인화 콘텐츠 제공 서비스를 제안한다. 우선, 웹 서비스에서 제공하는 피드를 이용하여 사용자가 생성한 태그 중 가장 많이 쓰인 10개의 태그와 그것들과 관련 있는 태그들만 모아서 관심 범주을 추출하기 위한 태그 집합을 구성한다. 구성된 태그 집합을 바탕으로 피어슨 상관 계수를 통해 태그 간 동시 사용률을 조사한다. 이후 사용자 흥미에 부합하는 콘텐츠를 검색하기 위해 조사된 동시 사용률을 바탕으로 검색 키워드 그룹을 추출한다. 이렇게 만들어진 키워드 그룹들은 사용자의 평소 관심사와 관련된 콘텐츠를 검색하는데 사용되며, 이를 통해 사용자의 관심 있는 내용의 콘텐츠를 사용자의 특별한 검색 절차 없이 제공받는다. 이러한 방식을 통해 사용자가 원하는 정보를 입력하는 절차 없이도 웹에 축적된 사용자의 정보를 사용하여 자동으로 개인화된 콘텐츠를 제공할 수 있을 것으로 기대 된다.

  • PDF

소셜 복마킹 시스템의 스패머 탐지를 위한 기계학습 기술의 성능 비교 (Comparative Study of Machine learning Techniques for Spammer Detection in Social Bookmarking Systems)

  • 김찬주;황규백
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권5호
    • /
    • pp.345-349
    • /
    • 2009
  • 소결 북마킹(social bookmarking) 시스템은 사용자가 북마크를 저장하고 공유할 수 있는 플랫폼을 제공하는 웹 기반(web-based) 시스템으로 폭소노미(folksonomy)를 이용한 대표적인 웹2.0 서비스이다. 소셜 북마킹 시스템에서의 스패머(spammer)란 자신들의 이익을 위해서 시스템을 고의적으로 악용하는 사람을 말한다. 스패머는 많은 양의 잘못된 정보를 시스템에 포스팅(posting)하기 때문에 전체 소셜 북마킹 시스템의 리소스(resource)를 쓸모없게 만들어 버린다. 따라서, 스패머를 빠른 시간 안에 탐지하고 그들의 접근을 차단하는 것은 시스템의 붕괴를 방지하기 위해 중요하다. 본 논문에서는 사용자가 사용한 태그에 대한 데이터를 추출하여, 사용자가 스패머 인지 아닌지를 예측하는 모델을 기계학습의 다양한 방법을 적용하여 생성한 후 그 성능을 비교해 보았다. 구체적으로, 결정테이블 (decision table, DT), 결정트리(decision tree, ID3), 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier), TAN(tree-augmented $na{\ddot{i}}ve$ Bayes) 분류기, 인공신경망(artificial neural network)의 방법을 비교하였다. 그 결과 AUC(area under the ROC curve)와 모델 생성시간을 고려하였을 때 나이브 베이즈 분류기가 가장 만족할 만한 성능을 보였다. 나이브 베이즈 분류기의 분류 결과가 가장 좋았던 이유는 성능을 비교하는 데 사용된 AUC가 결정트리 계열의 방법(ID3 등)보다 나이브 베이즈 분류기에서 일반적으로 높게 나오는 경향이 있다는 것과, 스패머 탐지 문제가 선형으로 분리 가능한 경우(lineally separable)와 유사할 가능성이 높기 때문으로 여겨진다.

협력적 북마킹의 태킹 행태 분석 (Analysis of the usage Pattern of Tagging in Collaborative Bookmarking)

  • 최준연;김용수
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.193-201
    • /
    • 2009
  • 웹문서의 특성을 표현하기 위해 키워드 형태로 부여하는 태깅의 이용이 다양한 웹서비스에서 확산되고 있다. 온라인 즐겨찾기 서비스라고 말할 수 있는 협력적 북마킹 서비스에서도 태깅이 중요한 역할을 수행하는데, 사용자가 부여한 태그는 자신의 북마크를 손쉽게 검색하고 타사용자의 웹문서 검색을 정교하게 만들어준다. 본 연구에서는 사용자들의 태깅 데이터를 분석하여 웹문서와 사용자의 태그 수에 영향을 주는 요인이 무엇인가를 탐색하였다. 웹문서의 태그 수에는 웹문서의 특성보다 사용자의 특성에 따라 더 큰 편차를 보였으며, 이것은 사용자의 성향이 태그의 다양성에 더 큰 영향을 미친다는 것을 의미한다. 또한 추종적 사용자보다는 가장 먼저 웹문서를 북마킹하는 선도적 사용자들이 더 많은 태그를 생성하는데 기여하는 것으로 나타났다. 풍부하고 다양한 태깅을 통해 서비스의 품질을 향상시키기 위해서는 선도적 사용자들에 대한 보상과 인센티브를 통해 더 많은 지식을 생성할 수 있도록 해야 한다는 시사점을 제공한다.

집단지성 기반 학습자료 북마킹 서비스 시스템 (Learning Material Bookmarking Service based on Collective Intelligence)

  • 장진철;정석환;이슬기;정치훈;윤완철;이문용
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.179-192
    • /
    • 2014
  • 최근 IT 환경의 변화에 따라 웹 서비스를 기반으로 대규모 사용자 대상의 상호 참여적인 MOOC(Massive Open Online Courses)과 같은 온라인 교육 환경이 부상하고 있다. 그러나 온라인 교육 시스템은 원거리로 학습이 이루어짐에 따라 학습자의 자발적 동기를 꾸준히 유지하기 어려우며, 또한 학습자 간에 지식을 공유하고 공유한 지식을 활용하는 기능이 부족하다. 이러한 문제를 극복하기 위해 구성주의적 학습이론과 집단지성에 기반하여 학습자가 보유한 학습자료를 공유하고 개인화된 학습자료 추천을 받을 수 있는 학습자료 북마킹 서비스인 WeStudy를 구현하였다. 위키피디아(Wikipedia), 슬라이드쉐어 (SlideShare), 비디오렉쳐스 (VideoLectures) 등 현존하는 집단지성 기반 서비스들의 주요 기능으로부터 필요한 집단지성 기능들을 검토하였으며, 본 서비스의 주요 기능으로 1) 리스트 및 그래프 형태의 학습자료 리스트 시각화, 2) 개인화된 학습자료 추천, 3) 보다 상세한 학습자료 추천을 위한 관심 학습자 지정 등을 도출하여 시스템을 설계하였다. 이후, 웹 기반으로 구현된 세 가지 주요기능 별로 개량된 휴리스틱 사용성 평가 방법을 통해 개발된 시스템의 사용성 평가를 실시하였다. 10명의 HCI 분야 전공자 및 현업 종사자를 대상으로 정량적 및 정성적인 평가 결과, 세 가지의 주요 기능에서 전반적으로 사용성이 우수한 것으로 판정되었다. 주요 기능 별 정성적인 평가에서 도출된 여러 마이너 이슈들을 반영할 필요가 있으며, 향후 대규모 사용자를 대상으로 본 서비스를 보급하고 이용할 수 있도록 제공하여 자발적인 지식 공유 환경을 조성할 수 있을 것으로 전망된다.

소셜 태깅에서 관심사로 바라본 태그 특징 연구 - 소셜 북마킹 사이트 'del.icio.us'의 태그를 중심으로 - (A Study of User Interests and Tag Classification related to resources in a Social Tagging System)

  • 배주희;이경원
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.826-833
    • /
    • 2009
  • 최근 소셜 태깅(social tagging)이 화두로 떠오르면서 전문가 집단에서 이루어지던 택소노미(taxonomy)에서 점차 사람들이 만들어가는 분류법인 폭소노미(folksonomy)의 형태로 변화하고 있다. 태그(tag)는 콘텐츠와의 접근이 직관적이기 때문에 원하는 콘텐츠로의 이동이 용이하며 그와 관련된 태그들을 만나면서 개인적인 회상능력을 증가시키고 사회적 영향력을 높이며, 우연한 정보의 발견, 재미있는 경험을 얻을 수 있다. 점차 네트워크 형성이 관심사로 연결된 형태로 커지면서 태그가 다른 형태의 콘텐츠를 한 곳에 묶어주는 역할을 담당하고 있다. 따라서 이 연구는 소셜 태깅에서 나타나는 사용자(user), 태그(tag), 리소스(resource) 간의 관계를 정리하고 사람들이 자신의 즐겨찾기 목록에 사이트를 추가하는 행위를 관심사로 보아, 이 때 입력한 태그를 어떠한 특징으로 나누어 볼 수 있을지 연구하였다. 이를 위해, 리소스 중심의 태그 분류를 7가지로 나누고, 이 분류법를 이용하여 소셜 북마킹(social bookmarking) 사이트 'del.icio.us' 에서 사용되고 있는 태그를 중심으로 음악, 사진, 게임의 세 가지 관심사 영역에서 사람들이 URL을 등록할 때에 어떠한 태그를 선택 하고 있는지 7가지 특징에 따라 분석하였다. 이를 통해 사이트를 바라보는 사람들의 관점을 파악해 볼 수 있고, 소셜 서비스 확장, 다양한 비지니스 모델을 설정 할 수 있는 가능성을 모색 해 볼 수 있을 것이다.

  • PDF