• Title/Summary/Keyword: 북극해

Search Result 124, Processing Time 0.025 seconds

Ice Load Estimation Procedures for IBRV ARAON by Analyzing Shear Strain Data Measured in Arctic Sea (쇄빙연구선 아라온호의 북극해 실선 계측 전단변형 데이터 분석을 통한 빙하중 산정 기법 고찰)

  • Min, Jung Ki;Choi, Kyungsik;Cheon, Eun-Jee;Kim, Jin Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.468-473
    • /
    • 2016
  • This paper focuses on the estimation of local ice loads exerted from ship-ice interaction processes. The Korean IBRV ARAON was used to perform field ice trials during her 2015 Arctic voyage. During ARAON's general ice transit, a total of 72 channels of data from both strain gauges on the inner hull plates and those installed on the transverse frames of the ARAON's bow section structures were analyzed to calculate the local ice loads. The local ice loads estimated from the analysis of the shear strain data measured on the side frames were compared to those from the hull plate pressures.

Authigenic Neodymium Isotope Record of Past Ocean Circulation (과거 해수 순환을 지시하는 해수기원 네오디뮴 동위원소 비 기록)

  • Huh, Youngsook;Jang, Kwangchul
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.249-259
    • /
    • 2014
  • Proxies for paleo-circulation are drawing much interest with the recognition that ocean circulation plays an important part in the redistribution of heat and climate change on orbital and millennial timescales. In this review, we will introduce how neodymium isotope ratios of the authigenic fraction of marine sediments can be used as a proxy for ocean circulation along with analytical methods and two case studies. The first case study shows how the North Atlantic Deep Water (NADW) has varied over the glacial-interglacial and stadial-interstadial periods. The second case study shows how the freshwater budget and water circulation within the Arctic Ocean can be reconstructed for the last glacial period.

Recent Trends of Sea Ice in the Arctic Ocean and Northern Sea Route as of July 2017 (북극해와 북해에서의 해빙 관련 최신 동향(2017년 7월까지))

  • Harun-Al-Rashid, Ahmed;Yang, Chan-Su
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.133-137
    • /
    • 2017
  • The Arctic region remains surrounded by sea ice during most of the period of the year. In the Arctic Ocean the Northern Sea Route (NSR) has been used as an important route for shipping. The arctic sea ice is decreasing since 1979; hence needs to be monitored. In this research work sea ice concentration in the recent years and sea ice concentration anomalies of few months with long term sea ice concentration are studied. The climatology of long term ice concentration data from various satellites, and the recent sea ice concentration data from Advanced Microwave Scanning Radiometer 2 (AMSR2) were used. The results show that sea ice concentration and sea ice extent in the Arctic region decreased by around 5% from 2015 to 2016, but in 2017 increased again in smaller amount in some areas like around Novaya Zemlya, and parts of the sea in between Greenland and Longyearbyen, and around Banks Island. The percentages of sea ice area in NSR for July 7 in 2015 to 2017 were 37%, 39% and 33%, respectively, indicating a large area (around ten thousand $km^2$) become ice free in 2017 compared to the previous year.

Arctic Climate Change for the Last Glacial Maximum Derived from PMIP2 Coupled Model Results (제2차 고기후 모델링 비교 프로그램 시뮬레이션 자료를 이용한 마지막 최대빙하기의 북극 기후변화 연구)

  • Kim, Seong-Joong;Woo, Eun-Jin
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.31-50
    • /
    • 2010
  • The Arctic climate change for the Last Glacial Maximum(LGM) occurred at 21,000 years ago (21ka) was investigated using simulation results of atmosphere-ocean coupled models from the second phase of the Paleoclimate Modelling Intercomparison Program(PMIP2). In the analysis, we used seven models, the NCAR CCSM of USA, ECHAM3-MPIOM of German Max-Planxk Institute, HadCM3M2 of UK Met Office, IPSL-CM4 of France Laplace Institute, CNRM-CM3 of France Meteorological Institute, MIROC3.2 of Japan CCSR at University of Tokyo, and FGOALS of China Institute of Atmospheric Physics. All the seven models reproduces the Arctic climate features found in the present climate at 0ka(pre-industrial time) in a reasonable degree in comparison to observations. During the LGM, the atmospheric $CO_2$ concentration and other greenhouse gases were reduced, the ice sheets were expanded over North America and northern Europe, the sea level was lowered by about 120m, and orbital parameters were slightly different. These boundary conditions were implemented to simulated LGM climate. With the implemented LGM conditions, the biggest temperature reduction by more than $24^{\circ}C$ is found over North America and northern Europe owing to ice albedo feedback and the change in lapse rate by high elevation. Besides, the expansion of ice sheets leads to the marked temperature reduction by more then $10^{\circ}C$ over the Arctic Ocean. The temperature reduction in northern winter is larger than in summer around the Arctic and the annual mean temperature is reduced by about $14^{\circ}C$. Compared to low mid-latitudes, the temperature reduction is much larger in high northern altitudes in the LGM. This results mirror the larger warming around the Artic in recent century. We could draw some information for the future under global warming from the knowledge of the LGM.

Development of Web Based GIS for Polar Ocean Research (극지 해양환경 연구를 위한 웹GIS 구축)

  • CHI, Jun-Hwa;HYUN, Chang-Uk;KIM, Hyun-Cheol;JOO, Hyoung-Min;YANG, Eun-Jin;PARK, Ho-Joon;KANG, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.15-25
    • /
    • 2017
  • In recent years, polar research has been focused on climate change, natural resources, and development of a new North Pole Route. Since 2010, the Korea Polar Research Institute has been collecting various in situ data from the Arctic/Antarctic oceans using ARAON, which is the first effort of Korea toward leading global polar research. As a part of these activities, a web-based GIS service was developed to collect in situ data and to standardize data formats. Visualizations of in situ measurements and thematic maps were also developed to improve both the quantitative and qualitative quality of polar ocean research, and to increase accessibility of polar oceanographic data. This system will ultimately share all of the data acquired from the Arctic/Antarctic oceans with international research groups.

Provenance of the Sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean (북극 척치해 아라온 마운드 퇴적물의 기원지에 관한 연구)

  • Jang, JeongKyu;Koo, HyoJin;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.15-29
    • /
    • 2021
  • In the Arctic Ocean, the distribution of sea ice and ice sheets changes as climate changes. Because the distribution of ice cover influences the mineral composition of marine sediments, studying marine sediments transported by sea ice or iceberg is very important to understand the global climate change. This study analyzes marine sediment samples collected from the Arctic Ocean and infers the provenance of the sediments to reconstruct the paleoenvironment changes of the western Arctic. The analyzed samples include four gravity cores collected from the Araon mound in the Chukchi Plateau and one gravity core collected from the slope between the Araon mounds. The core sediments were brown, gray, and greenish gray, each of which corresponds to the characteristic color of sediments deposited during the interglacial/glacial cycle in the western Arctic Ocean. We divide the core sediments into three units based on the analysis of bulk mineral composition, clay mineral composition, and Ice Rafted Debris (IRD) as well as comparison with previous study results. Unit 3 sediments, deposited during the last glacial maximum, were transported by sea ice and currents after the sediments of the Kolyma and Indigirka Rivers were deposited on the continental shelf of the East Siberian Sea. Unit 2 sediments, deposited during the deglacial period, were from the Kolyma and Indigirka Rivers flowing into the East Siberian Sea as well as from the Mackenzie River and the Canadian Archipelago flowing into the Beaufort Sea. Unit 2 sediments also contained an extensive amount of IRD, which originated from the melted Laurentide Ice Sheet. During the interglacial stage, fine-grained sediments of Unit 1 were transported by sea ice and currents from Northern Canada and the East Siberian Sea, but coarse-grained sediments were derived by sea ice from the Canadian Archipelago.

Modeling of Ocean Circulation in the Neighboring Seas of Korean Peninsula from Global Ocean Circulation Model (전구 해수순환 수치모형에 의한 한반도 주변의 순환 모사)

  • Choi Bung Ho;Choi Young Jin;Kim Cheol Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.241-257
    • /
    • 2004
  • Global prognostic models based on NCOM(NCAR CSM Ocean Model) of NCAR which is generic from Bryan-Cox-Semtner model are established to study the ocean circulation in the neighboring seas of Korean peninsula. The model domain covers areas from $80.6{^\circ}S~88.6{^\circ}N$in meridional direction and the vertical water column is divided into 15 levels taking enhanced grid resolution of $0.3^\circ$ around Korean peninsula. Island option is used for 22 islands to simulate inshore circulation by hole-relaxation method and the restart hydrographic data are taken from NCAR(1998) CSM model that has been run for 300 years. The wind stress data are taken from Choi et al. (2002). Based on the model results, circulation patterns in the NW Pacific and global oceans are investigated. Volume transports calculated at five straits in the neighboring seas of Korean peninsula are compared with the results from Choi et al. (2002) and other observed data.

Classification for Landfast Ice Types in the Greenland of the Arctic by Using Multifrequency SAR Images (다중주파수 SAR 영상을 이용한 북극해 그린란드 정착빙 분류)

  • Hwang, Do-Hyun;Hwang, Byongjun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • To classify the landfast ice in the north of the Greenland, observation data, multifrequency Synthetic Aperture Radar (SAR) images and texture images were used. The total four types of sea ice are first year ice, highly deformed ice, ridge and moderately deformed ice. The texture images that were processed by K-means algorithm showed higher accuracy than the ones that were processed by SAR images; however, overall accuracy of maximum likelihood algorithm using texture images did not show the highest accuracy all the time. It turned out that when using K-means algorithm, the accuracy of the multi SAR images were higher than the single SAR image. When using the maximum likelihood algorithm, the results of single and multi SAR images are differ from each other, therefore, maximum likelihood algorithm method should be used properly.

Estimation Method for Ice load of Managed Ice in an Oblique Condition (깨어진 해빙의 사항조건에서 빙 하중 추정법 연구)

  • Kim, Hyunsoo;Lee, Jae-bin
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.184-191
    • /
    • 2018
  • Recently, as sea ice in the Arctic has been decreasing due to global warming, it has become easier to develop oil and gas resources buried in the Arctic region. As a result, Russia, the United States, and other Arctic coastal states are increasingly interested in the development of oil and gas resources, and the demand for offshore structures to support Arctic sea resources development is expected to significantly increase. Since offshore structures operating in Arctic regions need to secure safety against various drifting ice conditions, the concept of an ice-strengthened design is introduced here, with a priority on calculation of ice load. Although research on the estimation of ice load has been carried out all over the world, most ice-load studies have been limited to estimating the ice load of the icebreaker in a non-oblique state. Meanwhile, in the case of Arctic offshore structures, although it is also necessary to estimate the ice load according to oblique angles, the overall research on this topic is insufficient. In this paper, we suggest algorithms for calculating the ice load of managed ice (pack ice, 100% concentration) in an oblique state, and discuss validity. The effect of oblique angle according to estimated ice load with various oblique angles was also analyzed, along with the impact of ship speed and ice thickness on ice load.

Rising of Integrated Ocean Drilling Program (IODP) and its Scientific Achievement on Earth Science and Role of Korea Integrated Ocean Drilling Program (K-IODP) (국제공동 해양 시추사업(IODP)의 등장과 지구과학에의 학술적 성과 및 한국프로그램(K-IODP)의 역할)

  • Hyun, Sang-Min;Chang, Se-Won;Lee, Young-Joo
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.2
    • /
    • pp.1-15
    • /
    • 2011
  • The ODP (Ocean Drilling Program) has been greatly contributed to the progress of Earth Science through the strong international cooperation with its name changed from DSDP DSDP(Deep Sea Drilling Program), IPOD (International Phase of Ocean Drilling) to IODP (Integrated Ocean Drilling Program). The IODP program which was launched about ten years ago will continue to develop toward the 2nd phase of scientific targets through the tight international cooperation. Distinguished scientific results from the various expedition as well as new phase of IODP structure and its important role that enhance the new scientific fields are summarized in this study. In particular, Arctic Expedition and deep-biosphere and high resolution climatic study that was not performed in previous ODP stages, will be extensively conducted in coming new 2nd IODP stages. Likewise, through strong international cooperation, it is expected that IODP would play an important role in Earth Science developments.

  • PDF