Modeling of Ocean Circulation in the Neighboring Seas of Korean Peninsula from Global Ocean Circulation Model

전구 해수순환 수치모형에 의한 한반도 주변의 순환 모사

  • 최병호 (성균관대학교 토목환경공학과) ;
  • 최영진 (큐슈대학 지구시스템과학부) ;
  • 김철호 (한국 해양연구원 지구환경연구본부)
  • Published : 2004.12.01

Abstract

Global prognostic models based on NCOM(NCAR CSM Ocean Model) of NCAR which is generic from Bryan-Cox-Semtner model are established to study the ocean circulation in the neighboring seas of Korean peninsula. The model domain covers areas from $80.6{^\circ}S~88.6{^\circ}N$in meridional direction and the vertical water column is divided into 15 levels taking enhanced grid resolution of $0.3^\circ$ around Korean peninsula. Island option is used for 22 islands to simulate inshore circulation by hole-relaxation method and the restart hydrographic data are taken from NCAR(1998) CSM model that has been run for 300 years. The wind stress data are taken from Choi et al. (2002). Based on the model results, circulation patterns in the NW Pacific and global oceans are investigated. Volume transports calculated at five straits in the neighboring seas of Korean peninsula are compared with the results from Choi et al. (2002) and other observed data.

전구해양순환모형인 Bryan-Cox-Semtner모형에서 파생된 NCAR의 NCOM모형을 이용하여 한반도 주변해역의 해수순환을 가능한 세밀하게 해상시킨 예단적 전구해양순환모형을 수립하였다. 모형영역은 남북방향으로 $80.6{^\circ}S~88.6{^\circ}N$의 범위로서 북극해가 제외되었으며, 한반도 주변이 약 $0.3^\circ$로 해상된 수평 가변격자와 연직방향으로 15층으로 구성하였다. 섬 주변해안의 순환을 적절히 재현하기 위한 구멍완화법(Hole-relaxation method)을 적용하여 22개의 섬처리가 고려되었으며, NCAR에서 CSM(Climate System Model)운용을 위해 300년동안 spin-up 계산된 결과를 초기자료로 하고, Choi et al.(2002)의 접합 대기해양모형의 결과로부터 얻은 바람응력자료가 사용되었다. 모형결과로부터, 전구와 북서태평양 해역의 순환패턴을 살펴보았으며, 한반도 주변의 5개해협에서의 용적수송량을 Choi et al.(2002)의 결과 및 관측치와 비교하였다.

Keywords

References

  1. 김동훈 (1995). 동해의 진단적 3차원 경압 순환 모형에 관한 연구. 석사학위논문, 성균관대학교-한국해양연구소 학연과정
  2. 정종찬 (1998). 고해상도 해양 대순환 수치모사의 검증. 석사학위논문, 연세대학교 대기과학과
  3. 최병호, 김경옥, 엄현민 (2002). 한국 근해의 디지털 수심, 표고 데이터베이스. 한국해안해양공학회지, 14, 41-50
  4. Blanke, B. and Delecluse, P.(1993). Low frequency variability of the tropical Atlantic ocean simulated by a general circulation model with mixed layer physics. J. Phys. Oceanogr., 23, 1363-1388 https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2
  5. Bleck, R. and Boudra, D. B. (1984). Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11, 755-770 https://doi.org/10.1175/1520-0485(1981)011<0755:ITOANO>2.0.CO;2
  6. Boyer, T. and Levitus, S. (1994). Quality control and processing of historical oceanographic temperature, salinity, and oxygen data. NOAA Technical Report NESDIS 81, Washington, D. C.
  7. Braconnot, P., Marti, O. and Joussaume, S. (1997). Adjustment and feedbacks in a global coupled ocean-atmosphere model. Climate Dyn., 13, 507-519 https://doi.org/10.1007/s003820050179
  8. Bryan, K. (1969). A numerical model for the study of the circulation of the world ocean. J. Comp. Phys., 4. 347-376 https://doi.org/10.1016/0021-9991(69)90004-7
  9. Bryan, K. and Cox, M.D. (1967). A numerical investigation of the ocean general circulation. Tellus, 19, 54-80 https://doi.org/10.1111/j.2153-3490.1967.tb01459.x
  10. Bryan, K. and Cox, M.D. (1972). An approximate equation of state for numerical models of the ocean circulation. J. Phys. Oceanogr., 2, 510-514 https://doi.org/10.1175/1520-0485(1972)002<0510:AAEOSF>2.0.CO;2
  11. Bryan, K. and Lewis, L.J. (1979). A water mass model of the world ocean. J. Geophys. Res., 84(C5), 2503-2517 https://doi.org/10.1029/JC084iC05p02503
  12. Choi, B.H., Kim, D.H. and Kim, J.W. (2002). Regional responses of climate in the Northwestern Pacific ocean to gradual global warming for a ${CO_2}$, Quadrupling. J. of the Meteorological Society of Japan, 80, 1427-1442 https://doi.org/10.2151/jmsj.80.1427
  13. Fang, G., Wei, Z., Choi, B.H. and Wang, K. (2001). Interbasin transports of fresh water, heat and salt through the boundaries of Pacific-Asian Marginal Seas from an ocean circulation model. 11th PAMS/JECSS. 53-57
  14. Fu, Lee-Leung, Smith and Richard D. (1996). Global ocean circulation from satellite altimetry and high-resolution computer simulation. Bulletin of the American Meteorological Society, 77(11), 2625-2636 https://doi.org/10.1175/1520-0477(1996)077<2625:GOCFSA>2.0.CO;2
  15. Gent, P.R., Bryan, F.O., Danabasoglu, G., Doney, S.C., Holland, W.R., Large, W.G. and McWilliams, J.C. (1998). The NCAR climate system model global ocean component. J. Clim., 11(1), 287-1,306
  16. Gent, P.R. and McWilliams, J.C. (1990). Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150-155 https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
  17. Gent, P.R., Willebrand, J., McDougall, T.J. and McWilliams, J.C. (1995). Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463-474 https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2
  18. Guilyardi, E. and G. Madec (1997). Performance of the OPA/ARPEGE-T21 global ocean-atmosphere coupled model. Climate Dyn., 13, 149-165 https://doi.org/10.1007/s003820050157
  19. Guo, X. (1999). On the volume transport of the Taiwan Strait. 10th PAMS/JECSS, 7P1-02-4
  20. Han, Y.J. (1984). A numerical world ocean general circulation model: Part II. A baroclinic experiment. Dyn. Atmos. Oceans, 8, 141-172 https://doi.org/10.1016/0377-0265(84)90020-4
  21. Hirst, A.C., O'Farrell, S.P. and Gordon, H.B. (2000). Comparison of a coupled ocean-atmosphere model with and without oceanic eddy-induced advection. 1. Ocean spin-up and control integrations. J. Climate, 13, 139-163 https://doi.org/10.1175/1520-0442(2000)013<0139:COACOA>2.0.CO;2
  22. Holland, W.R. (1986). Quasigeostrophic modelling of eddyresolved ocean circulation. Advanced Physical Oceanographic Modeling (ed. J. O'Brien, Reide Pub. Co.)
  23. Holland, W.R., Chow, J.H.C. and Bryan, F.O. (1998). Application of a third-order upwind scheme in the NCAR ocean model. J. Clim., 11(1), 487-1, 493
  24. Ishida, A., Kashino, Y., Mitsudera, H., Yoshioka, N. and Kadokura, T. (1998). Preliminary results of a global high-resolution GCM ex-periment. J. Fac. Sci. Hokkaido Univ., Ser. VII (Geophysics), 11, 441-460
  25. Isobe, A. (1994). Seasonal variability of the barotropic and baroclinic motion in the Tsushima-Korea Strait. J. Oceanogr. 50, 223-238 https://doi.org/10.1007/BF02253481
  26. Johns, T.C., Carnell, R.E., Crossley, J.R, Gregory, J.M., Mitchell, J.F.B., Senior, C.A., Tett, S.F.B. and Wood, R.A. (1997). The second Hadley Centre coupled ocean-atmosphere GCM: Model description, spinup and validation. Climate Dyn., 13, 103-134 https://doi.org/10.1007/s003820050155
  27. Kim, C.H. (1996). A numerical experiment study on the circulation of the Japan Sea (East Sea). Ph. D. thesis, Kyushu University
  28. Kim, D.H. (1999). Sea level change due to global warming in the Northwestern Pacific ocean. Ph. D. thesis, Sungkyunkwan University
  29. Kim, J.W. and Gates, W.L. (1980). Simulation of the seasonal fluctuation of the upper ocean by a global circulation model with an Imbedded mixed layer. Rep. No. 11, Climatic Research Institute, Oregon State University, Corvallis, OR, 60p
  30. Large, W.G., McWilliams, J.C. and Doney, S.C. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363-403 https://doi.org/10.1029/94RG01872
  31. Li, T., Zhang, Y., Lu, E. and Wang, D. (2002). Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean Dipole: an OGCM diagnosis. Geophys. Res. Lett., 29, 10.1029/2002GL05789
  32. Manabe, S., Stouffer, R.J., Spelman, M.J. and Bryan, K. (1991). Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric ${CO_2}$. Part I: Annual mean response. J. Climate, 4, 785-818 https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2
  33. Mellor, G.L. and Durbin, P.A. (1975). The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 5, 718-728 https://doi.org/10.1175/1520-0485(1975)005<0718:TSADOT>2.0.CO;2
  34. Mellor, G.L. and Yamada, T. (1974). A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791-1806 https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
  35. Mellor, G.L., and Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875 https://doi.org/10.1029/RG020i004p00851
  36. Mesinger, F., and Janjic, Z.I. (1975). Problems and numerical methods of the incorporation of mountains in atmospheric models. Lectures in Applied Mathematics, 22, 81-120
  37. Moore, A.M., and Reason, C.J.C. (1993). The response of a global ocean general circulation model to climatological surface boundary conditions for temperature and salinity. J. Phys. Oceanog., 23, 300-328 https://doi.org/10.1175/1520-0485(1993)023<0300:TROAGO>2.0.CO;2
  38. NCAR Oceanography Section(NCAR OS). (1996). The NCAR CSM ocean model. NCAR Technical Note NCAR/TN423+STR. National Center for Atmospheric Research, Boulder, Colorado
  39. Nong, G.T., Najjar, R.G., Seidov, D. and Peterson, W.H. (2000). Simulation of ocean temperature change due to the opening of Drake Passage. Geophys. Res. Lett. 27 (17), 2689-2692 https://doi.org/10.1029/1999GL011072
  40. Oberhuber, J.M. (1993). Simulation of the Atlantic circulation with a coupled sea-ice-mixed layer-isopycnical general circulation model. Part I: model description. J. Phys. Oceanogr., 23, 808-829 https://doi.org/10.1175/1520-0485(1993)023<0808:SOTACW>2.0.CO;2
  41. Pacanowski, R. and Philander, S.G.H. (1981). Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 1443-1451 https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
  42. Power, S.B., Colman, R.A., McAvaney, B.J., Dahni, R.R., Moore, A.M. and Smith, N.R. (1993). The BMRC Coupled atmosphere/ocean/sea-ice model. BMRC Research Report No.37, Bureau of Meteorology Research Centre, Melbourne, Australia, 58
  43. Redi, M.H. (1982). Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154-1158 https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2
  44. Rosati, A., Miyakoda, K. (1988). A GCM for upper ocean simulation. J. Phys. Oceanogr., 18, 1601-1626 https://doi.org/10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2
  45. Russell, G.L., Miller, J.R. and Rind, D. (1995). A coupled atmosphere-ocean model for transient climate change studies. Atmos.-Ocean, 33, 683-730 https://doi.org/10.1080/07055900.1995.9649550
  46. Semtner, A.J. (1974). An oceanic general circulation model with bottom topography. Tech. Rep. 9(99), Dep. of Meteo., Univ. of Calif., Los Angeles
  47. Takano, K. (1974). A general circulation model for the world ocean. Numerical Simulation of Weather and Climate, Tech. Rep. 8, Dept. Meteo. UCLA. 46
  48. Tokioka, T., Noda, A., Kitoh, A., Nikaidou, Y., Nakagawa, S., Motoi, T., Yukimoto, S. and Takata, K. (1996). A transient ${CO_2}$, experiment with the MRI CGCM: Annual mean response. CGER's Supercomputer Monograph Report 2, CGER-I022-96, ISSN 1341-4356, Center for Global Environmntal Research, National Institute for Environmental Studies, Environment Agency of Japan, Ibaraki, Japan, 86
  49. Yoon, J.H. (1991). The branching ofthe Tsushima Current. Reports of Research Institute for Applied Mechanics, Kyushu University, XXXVIII(108)
  50. Yu, Y.Q. (1997). Design of a sea-air-ice coupling scheme and a study of numerical simulation of interdecadal oscillation of climate. Ph.D.thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 130. (in Chinese)
  51. Zhang, X.H., Chen, K.M. Jin, Z.Z., Lin, W.Y. and Yu, Y.Q. (1996). Simulation of thermohaline circulation with a twenty-layer oceanic general circulation model. Theoretical and Applied Climatology, 55, 65-88 https://doi.org/10.1007/BF00864703