• Title/Summary/Keyword: 부화맨틀 1형

Search Result 8, Processing Time 0.025 seconds

Mantle Source Lithologies of Late Cenozoic Basaltic Rocks and Two Varieties of Enriched Mantle in the Korean Peninsula (한반도 신생대 후기 현무암의 근원 맨틀 암상과 두 종류의 부화 맨틀)

  • Choi, Sung Hi
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.183-197
    • /
    • 2022
  • Geochemical data, including Sr-Nd-Pb-Mg-Zn isotopes, reported on the late Cenozoic intraplate basaltic rocks in the Korean Peninsula (Mt. Baekdu, Jeongok, Baengnyeong Island, Pyeongtaek, Asan, Ganseong, Ulleung Island, Dok Island, and Jeju Island) are summarized to constrain their mantle source lithologies, and the nature of mantle end-members required. In the Sr-Nd isotope correlation diagram, Jeju basalts plot in the field of EM2-type oceanic island basalts (OIB), while the other basalts fall in the EM1-type OIB field. In Pb-Pb isotope space, Jeju basalts show a mixing array between Indian MORB and EM2 component, whereas the other basalts display an array with EM1 component. The Korean basalts were derived from a hybrid source of garnet lherzolite and recycled stagnant slab materials (eclogite/pyroxenite, pelagic sediments, carbonates) in the mantle transition zone. The EM1 component could be ancient (~2.0 Ga) K-hollandite-bearing pelagic sediments that were isolated for a long period in the mantle transition zone due to their neutral buoyancy. The EM2 component might have been relatively young (probably Pacific slab) and recently recycled clay-rich pelagic sediments. Eclogite and carbonates are unlikely to account for the EM components, but they are common in the mantle source of the Korean basalts.

Origins of Clinopyroxenes in Alkaline Basalts from Jeju Island (제주도 알칼리 현무암에 산출되는 단사휘석의 기원)

  • Yang Kyounghee;Hwang Byoung-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.33-43
    • /
    • 2005
  • Three types of clinopyroxenes in alkali basaltic rocks from Jeju Island can be identified on the basis of geochemical and textural data. Type Ⅰ is Cr-rich diopside in spinel peridotites from the upper mantle. Type Ⅱ is augite in fine-grained pyroxenites which are possibly either magmatic vein or metamorphic segregations owing to anatexis of the upper mantle. The augite of Type Ⅱ contains high Ca and Mg and relatively low Ti. Type Ⅲ is thought to be either cumulates or cognate phenocrysts and can be subdivided into Ⅲa, Ⅲb, and Ⅲc based on their occurrence mode. Clinopyroxenes of Type Ⅰ have the highest Mg# and Si and the lowest Ti, whereas those of Type Ⅲhave lower Mg#와 Si and higher Ti. These geochemical characteristics indicate that (Ti+Al/sup Ⅵ/)/Si and Al/sup Ⅵ//Al/sup Ⅵ/ increase from Type Ⅰ to Type Ⅲ. It is possibly interpreted that Type Ⅰ is of the highest pressure origin and Type Ⅲ of the lowest. Fractionation of high-pressure clinopyroxenes would result in evolved undersaturated alkali-enriched liquids, probably producing the alkali-enriched host basaltic rocks in Jeju Island.

Petrology of the Syenites in Hapcheon, Korea (경남 합천 지역의 섬장암에 관한 암석학적 연구)

  • Ok, Eun-Young;Kim, Jong-Sun;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.13-43
    • /
    • 2017
  • In the Hapcheon area, hypersthene-bearing monzonite (mangerite) and syenite are recognized. The main minerals of syenite are alkali feldspar, plagioclase, amphibole, biotite, and quartz. Anhedral hornblende and biotite are interstitial between feldspar and quartz, indicating that the hydrous minerals were crystallized later on. Based on petrochemical studies of major elements, syenite is alkaline series, metaluminous, and I-type. The variation patterns in the trace and rare earth elements of mangerite and syenite show the features of subduction-related igneous rock such as depletion of HFSE, relative enrichment in LILE to LREE, and negative Nb-P-Ti anomalies. Based on the experimental data and petrographic characteristics of the syenite, Hapcheon syenitic magma is considered to be formed by partial melting in a dry system. SHRIMP U-Pb zircon data yield the Triassic age as $227.4{\pm}1.4Ma$ in mangerite, $215.3{\pm}1.2Ma$ in syenite, and $217.9{\pm}2.6Ma$ in coarse-grained syenite, respectively. The mangerite age is similar to those of post-collisional plutonic rocks in Hongseong (226~233 Ma), Yangpyeong (227~231 Ma), and Odaesan (231~234 Ma) areas in the Gyeonggi Massif. Syenites were intruded after about 10 Ma. The features seen in the mangereite and syenite rocks can be explained by models such as the continental collision and slab break-off and the lithosphere thinning and asthenosphere upwelling model.

Petrochemical study on the Daejeon-sa basalt in the Mt. Juwang area, Cheongsong (청송 주왕산지역 대전사 현무암의 암석화학적 연구)

  • 윤성효;이문원;고정선;김영라;안지영
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.84-98
    • /
    • 2000
  • Daejeon-sa basalt in the Mt. Juwang area composed of 12 basalt flows alternate with 9 peperites and each basalt and peperite has the variety of thickness. Peperites yielded in Daejeon-sa basalt are mixed of basalt with reddish shale, of which textural type is globular peperite. Basalts yielded in Daejeon-sa basalt are massive basalt without vesicule, although sometimes vesicules are founded in upper within a flow unit. The basalt has mainly pseudomorph of olivine as phenocryst, and also plagioclase and clinopyroxene phenocryst. Matrix is mainly subophitic texture. The plotting result on the TAS diagram shows these basalts belong to the sub-alkaline, and it can be subdivided into calc-alkaline series on the basis of the diagram of Si02 vs. K20 and of alkali index vs. A1203 diagram. According to plots of wt.% oxides vs. wt.% MgO, abundances of A1203 and CaO increase with decreasing MgO while F ~ dOecre~ase . With decreasing MgO compatible elements decrease while incompatible elements increase. In spider diagram of MORB-normalized trace element patterns, HFS elements are nearly similiar with MORB, but LIL elements are enriched. Especially, contents of Ce, F: and Sm are enriched but Nb is depleted. In the chondrite-normalized REE patterns light REEs are enriched than heavy REEs. Tectomagmatic discrimination diagrams shows basalts in the study area are formed in the tectonomagmatic environment of subduction zone under continental margin. This result accord with characters of chemical composition mentioned above. Cr vs. Y diagram and CeM, vs. Ce diagram show that the primary magma of the basalts may formed by the about 15% partial melting of garnet-peridotite in the mantle wedge. After then, Daejeon-sa basalts may formed from evolved magma undergone mainly olivine fractional crystallization and contarnination of crustal materials before eruption.

  • PDF

Hydrogeochemical, Stable and Noble Gas Isotopic Studies of Hot Spring Waters and Cold Groundwaters in the Seokmodo Hot Spring Area of the Ganghwa Province, South Korea (강화 석모도 지역 온천수와 지하수의 수리지구화학 및 동위원소 연구)

  • Kim, Kyu-Han;Jeong, Yun-Jeong;Jeong, Chan-Ho;Keisuke, Nagao
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.15-32
    • /
    • 2008
  • The hydrochemical and isotopic (stable isotopes and noble gas isotopes) analyses for hot spring waters, cold groundwaters and surface water samples from the Seokmodo hot spring area of the Ganghwa province were carried out to characterize the hydrogeochemical characteristics of thermal waters and to interpret the source of thermal water and noble gases and the geochemical evolution of hot spring waters in the Seokmodo geothermal system. The hot spring waters and groundwaters show a weakly acidic condition with the pH values ranging from 6.42 to 6.77 and 6.01 to 7.71 respectively. The outflow temperature of the Seokmodo hot spring waters ranges from $43.3^{\circ}C\;to\;68.6^{\circ}C$. Relatively high values of the electrical conductivities which fall between 60,200 and $84,300{\mu}S/cm$ indicate that the hot spring waters were mixed with seawater in the subsurface geothermal system. The chemical compositions of the Seokmodo hot spring waters are characterized by Na-Ca-Cl water type. On the other hand, cold groundwaters and surface waters can be grouped into three types such as the Na(Ca)-$HCO_3$, Na(Ca)-$SO_4$ and Ca-$HCO_3$ types. The ${\delta}^{18}O\;and\;{\delta}D$ values of hot spring waters vary from -4.41 to -4.47%o and -32.0 to -33.5%o, respectively. Cold groundwaters range from -7.07 to -8.55%o in ${\delta}^{18}O$ and from -50.24 to -59.6%o in ${\delta}D$. The oxygen and hydrogen isotopic data indicate that the hot spring waters were originated from the local meteoric water source. The enrichments of heavy isotopes ($^{18}O\;and\;^2H$) in the Seokmodo hot spring waters imply that the thermal water was derived from the diffusion Bone between fresh and salt waters. The ${\delta}^{34}S$ values ranging from 23.1 to 23.5%o of dissolved sulfate are very close to the value of sea water sulfate of ${\delta}^{34}$S=20.2%o in this area, indicating the origin of sulfate in hot springs from sea water. The $^3H/^4He$ ratio of hot spring waters varies from $1.243{\times}10^{-6}\;to\;1.299{\times}10^{-6}cm^3STP/g$, which suggests that He gas in hot spring waters was partly originated from a mantle source. Argon isotopic ratio $(^{40}Ar/^{36}Ar=298{\times}10^{-6}cm^3STP/g)$ in hot spring waters corresponds to the atmospheric value.

Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses from the Myeongho Area in Northeast Yecheon Shear Zone (예천전단대 북동부 명호지역 엽리상 화강암류와 압쇄 편마암류에 대한 지구화학 및 Nd-Sr 동위원소 연구)

  • Kim, Sung-Won;Lee, Chang-Yun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.299-314
    • /
    • 2008
  • The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.

Petrochemistry of Garnet-bearing Metabasite in Marble at Shinri area in Hongseong and its Tectonic Implication (홍성 신리 지역 대리암 내 함석류석 변성염기성암의 암석지화학 연구 및 그 지구조적 의미)

  • Kim, Sung-Won;Koh, Hee-Jae
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.209-225
    • /
    • 2010
  • The Shinri area near the Yedang Lake, the eastern part of the Hongseong area in SW Gyeonggi Massif, consists of the Neoproterozoic Duckjeongri granodiorite-tonalite, mylonitized amphibole-bearing orthogneiss and impure marble with lens-shaped garnet-bearing metabasites. In this paper, we report mineralogical and geochemical data of Neoproterozoic lens-shaped garnet-bearing metabasites within marble of the Shinri area. The $SiO_2$ contents of garnet-bearing metabasites in marble vary between ~46.98 and 51.17 wt%, and the $Na_2O$ + $K_2O$ contents fall between ~1.95 and 2.85 wt%, similar to the tholeiitic sub-alkaline basaltic rocks. In the Zr/Y vs. Zr diagram, garnet-bearing metabasites also plot in the subalkaline basaltic rocks. The chondrite-normalized REE patterns for Shinri garnet-bearing metabasites show relatively flat patterns to that of chondrite. They show slight LREE-enriched and depleted patterns. The major and trace element data from lens-shaped garnet-bearing metabasites in marble of the Shinri area suggest that these rocks were formed in within plate. In contrast, previous major and trace element data of high pressure type garnet-bearing metabasites from the mafic-ultramafic complex in the Baekdong and Bibong areas suggest that these rocks were formed in a nascent arc to backarc spreading center within subduction zone setting. Based on mineral assemblage and mineral chemistry, P-T estimates for Shinri garnet-bearing metabasites are 9.6-12.7 kb, $695-840^{\circ}C$ for inclusions in the core, and 9.6-13.6 kb, $630-755^{\circ}C$ for those in the rim. These P-T estimates are distinct from those of the Baekdong and Bibong garnet-bearing metabasites with isothermal decompressional retrograde P-T path. In addition to Triassic tectonic activity previously reported in the Shinri area of Hongseong, the details of metamorphic history such as protolith age and Neo-Proterozoic metamorphic episode need to be solved.

Adakitic Signatures of the Jindong Granitoids (진동화강암체의 아다카이틱한 특성)

  • Wee, Soo-Meen;Kim, Yun-Ji;Choi, Seon-Gyu;Park, Jung-Woo;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.223-236
    • /
    • 2007
  • The eastern extension of the Cordilleran-type orogenic belt continues from southeastern China to the Chukot Peninsula through the Korean Peninsula. The Gyeongsang basin, located in the southeastern part of the Korean Peninsula and the Inner Zone of southwest Japan are characterized by extensive distribution of Cretaceous to Tertiary I-type calc-alkaline series of intrusive rocks. These intrusive rocks are possibly the result of intensive magmatism which occurred in response to the subduction of the Izanagi Plate beneath the northeastern part of the Eurasian Plate. The Jindong granitoids within the Gyeongsang basin are reported to be adakites, whose signatures are high $SiO_2,\;Al_2O_3$, Sr, Sr/Y La/Yb and, low Y and Yb contents. The major and trace element contents of the Jindong granitoids fall well within the adakitic field, whereas other Cretaceous granites in the same basin are plotted in the island arc ADR area in discrimination diagrams. Chondrite normalized REE patterns show generally enriced LREEs (La/Yb)C = 3.6-13.8) and slight negative to flat Eu anomalies. The mean Rb-Sr whole rock isotopic age of the Jindong granitoids is $114.6{\pm}9.1$ Ma with an initial Sr isotope ratio of 0.70457. These values suggest that the magma has mantle signature and intruded into the area during Early Cretaceous. The Jindong granitoids have similar paleogeographical locations, paleotectonic environments and intrusion ages to those of the Shiraishino granodiorites of Kyushu Island and the Tamba granitoids of San'yo belt located on southwestern Japanese arc.