• Title/Summary/Keyword: 부피분율

Search Result 153, Processing Time 0.031 seconds

Pressure Effect on the Solvolysis of o-Methylbenzyl Chloride in Ethanol-Water Mixtures (o-메틸염화벤질의 가용매분해반응에 대한 압력의 영향)

  • Oh Cheun Kwun;Jin Burm Kyong;Yong Kyun Shin
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.40-46
    • /
    • 1986
  • Rate constants for the solvolysis of o-methylbenzyl chloride were determined at 30$^{\circ}$ and 40$^{\circ}$C in aqueous ethanol mixtures under various pressures up to 1600 bar. From the rate constants, the activation parameters ${\Delta}V^{\neq}$, ${\Delta}{\beta}^{\neq}$, ${\Delta}H^{\neq}$, ${\Delta}S^{\neq}$ and${\Delta}G^{\neq}$ were evaluated. The values exhibit the extremum behavior at about 0.30 mole fraction of ethanol. This behavior is discussed in terms of electrostriction. To examine the reaction mechanism by Laidler and Eyring equation, we compared the rate constants with the dielectric constants of aqueous ethanol and the number of water molecule participated in the transition state. It was concluded that solvolytic reaction proceeds via $S_N$1 mechanism.

  • PDF

Solubility of Carbon Dioxide in Poly(ethylene glycol) Dimethyl Ether (Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도)

  • Lee, Eun-Ju;Yoo, Jung-Deok;Lee, Byung-Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.230-236
    • /
    • 2017
  • Solubility data of carbon dioxide ($CO_2$) in poly(ethylene glycol) dimethyl ether (PEGDME) are presented at pressures up to about 50 bar and at temperatures between 303 K and 343 K. The solubilities of $CO_2$ were determined by measuring the bubble point pressures of the $CO_2+PEGDME$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the PEGDME molecular weight on the $CO_2$ solubility, the $CO_2$ solubilities in PEGDME with two kinds of molecular weight were compared. As the equilibrium pressure increased, the $CO_2$ solubility in PEGDME increased. On the other hand, the $CO_2$ solubility decreased with increasing temperature. When compared at the same temperature and pressure, the PEGDME with a higher molecular weight gave smaller $CO_2$ solubility on a mass fraction and molality basis, but gave greater $CO_2$ solubilities on a mole fraction basis.

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.

The Extrusion Characteristics in Hor Extrusion of $SiC_p/6061 Al$ Composite ($SiC_p/6061 Al$ 복합재료의 압출가공에 있어서 압출특성)

  • Jo, Hyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.945-951
    • /
    • 1994
  • In order to elucidate the extrusion characteristics of $SiC_{p}$/6061 Al composite, defomation resistance, $K_{w}$ was determined using the empirical formula suggested by Watanabe et al, and also extrusion pressure was measured using the extrusion press with a capacity of 350 ton. The $K_{w}$ which are propotional to extrudability, was increased with increasing volume fraction of reinforcement, $SiC_{p}$, but decreased with increasing the particle size. The peaks of maximum extrusion pressure in curves of extrusion force vs ram stroke were changed sharply with decreasing the particle size. The elevated extrustion temperature resulted in the decreased $K_{w}$ and extrusion pressure, but caused the surface tearing of extrusion composite bars. The results showed that extrudability of the composite billets is depend on the extrusion conditions as well as the characteristics of reinforcement, $SiC_{p}$.

  • PDF

Interaction of Cyclohexane-Methyl Acetate Binary System through Dielectric Properties at Different Temperatures (다른 온도에서 유전 특성을 통한 사이클로헥산-메틸 아세테이드 바이너리 시스템의 상호관계)

  • Kamble, Siddharth P.;Sudake, Y.S.;Patil, S.S.;Khirade, P.W.;Mehrotra, S.C.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.373-378
    • /
    • 2011
  • The present paper reports the study of binary mixtures and their properties over the entire range of composition at temperatures 288, 298, 308 and 318 K. Excess dielectric constant, excess molar volume, excess refractive index, molar refraction and excess molar refraction at different temperatures have been computed from the experimentally measured values of the aforesaid parameters and fitted to the Redlich-Kister equation. Excess dielectric constant, excess molar volume excess molar polarizations are negative whereas excess refractive indices are positive over entire mole fraction of methyl acetate for all temperatures. The results are discussed in light of intermolecular interactions occurring in the binary mixture. Estimated coefficients of the Redlich-Kister polynomials and the standard error along the coefficients are also reported.

Stokesian Dynamic Simulation of Pigment Flow in Ink Jet Printer Nozzle (잉크제트 프린터를 이용한 섬유인쇄 시 노즐 관에서의 입자 흐름)

  • Kim, Young Dae;Lee, Moo Sung;Choi, Chang Nam;Lee, Ki Young
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.169-178
    • /
    • 2001
  • Textile printing prints around twenty bilion linear meters of textile each year. Rotary and flat bed screen printing requires pre and post treatments, leading to the loss of dyes and the environmental problems due to effluents. Digital ink jet printing can offer a solution to the existing problems, especially the environmental problems, in addition to its flexibility. Pigments are used as a dispersion inks in the digital inkjet textile printing. Molecular dynamic simulation like Stokesian dynamic simulation was employed to simulate the behavior of pigments and velocity distribution under the pressure driven flow in the printer nozzle. The simulation shows that the particle distribution in the flow are uniform if particle volume fraction is low, the ratio of nozzle and particle diameter is large, and the dimensionless average suspension velocity is low.

  • PDF

In-Line Monitoring the Dispersion of Highly Energetic Material Simulant (고에너지 물질 시뮬란트의 분산도의 In-Line 모니터링)

  • Lee, Sangmook;Hong, In-Kwon;Ahn, Youngjoon;Lee, Jae Wook
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.272-277
    • /
    • 2014
  • We studied in-line monitoring the dispersion of highly energetic material simulant by a twin screw extruder having a high temperature ultrasonic system. The simulant suspension system consisted of ethylene vinyl acetate and Dechlorane plus 25 as binder and filler, respectively. With increasing filling fraction, the ultrasonic velocity was not changed but the attenuation linearly decreased. It was possible to estimate the solid fraction of well dispersed suspension system by measuring ultrasonic attenuation. The ultrasonic attenuation of samples filled over 60 v% approached straight line with increasing filling fraction when the samples was extruded repeatedly. It was due to the enhanced dispersion of solid particles in the suspension system. It was believed that the degree of dispersion and filling fraction could be obtained by combination of on-line measurement like ultrasonic attenuation and off-line analysis like TGA and SEM with image analyzer.

Analysis of Correlation between the Hydrogen Embrittlement and the Small Punch Test for Hydrogen-charged Dual Phase Steels (수소주입시킨 DP박강판의 SP시험과 수소취성 관계 해석)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Small punch(SP) tests were performed on high strength Dual Phase(DP) steels in order to evaluate the behavior of hydrogen embrittlement. For this purpose, three different kinds of DP steel specimens were charged with hydrogen by electochemical hydrogen charging experiment. After charging with hydrogen, the amount of charged hydrogen was measured. The measurement results showed that amounts of charged hydrogen were largely dependent on the martensite volume fraction of DP steel. The hydrogen charging time of 25 hrs with current densities of 150 and $200mA/cm^2$ was investigated as saturation condition with hydrogen. The analysis results on the SP energy and height of SP bulbs after SP tests showed that those were decreased as the amount of charged hydrogen increased. Fractographs of SP bulbs were observed a brittle fracture mixed with quasi-cleavage fractures, layered structures and clear facets.

A Study on the Elution Behavior of some Metal-N-Alkylisonitrosoacetylacetone imine Chelates by Reversed Phase High Performance Liquid Chromatography (역상 액체 크로마토그래피에 의한 몇 가지 금속-N-Alkylisonitrosoacetylacetone imine 킬레이트의 용리거동에 관한 연구)

  • Kim, Yong Jun;Kewon, Ji Hae;Lee, Won
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.63-71
    • /
    • 1992
  • Liquid chromatographic behavior of Pd(II), Ni(II) and Co(III) in N-Alkylisonitrosoacetylacetone imine(HIAA-NR) chelates was investigated by reversed phase high perfomance liquid chromatography. The optimum conditions for the separation of IAA-NR-metal chelates were examined respect to the flow rate and mobile phase strength. The metal-N-Alkylisonitrosoacetylacetone imine chelates in solution were successfully separated on Novapak $C_{18}$ column using acetonitrile/water mixture as mobile phase. The elution order of chelates is methyl>ethyl>propyl>butyl as N-alkyl group for ligand is varied. It was found that all IAA-NR-metal chelates were eluted in an acceptable range of capacity factor value($0{\leq}log\;k^{\prime}{\leq}1$). The dependence of log k' on the volume fraction of water in the binary mobile phase was examined. Also, the dependence of k' on the liquid-liquid extraction distribution ratio(Dc) in acetonitrile-water-alkane extraction system was investigated for IAA-NR-metal chelate. Both kinds of dependence are linear, which suggests that the retention of the electroneutral metal chelates on Novapak $C_{18}$ column is largely due to the hydrophobic effect.

  • PDF

Effect of SiC volume fraction on mechanical properties and microstructure of $Si_{3}N_{4}/SiC$ nanocomposites (SiC 부피분율이 $Si_{3}N_{4}/SiC$ 초미립복합재료의 기계적 특성과 미세구조에 미치는 영향)

  • 황광택;김창삼;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.386-391
    • /
    • 1996
  • SiC particles (average size is 270 nm) of 0, 10, 20, 30, 40 vol% were dispersed in $Si_{3}N_{4}$, and $Si_{3}N_{4}/SiC$ nanocomposites were fabricated by hot press. After sintering, matrix phase, ${\alpha}-Si_{3}N_{4}$ was transformed to ${\beta}-Si_{3}N_{4}$, and second phase, ${\beta}-SiC$ was not changed. No grain boundary crystalline phase by adding of sintering additives was detected. Grain growth of $Si_{3}N_{4}$ was supressed with increasing of SiC contents, and then fine grain was occurred. The highest fracture strength was obtained at 10 vol% SiC, and fracture toughness was decreased, but hardness was linearly increased with SiC content.

  • PDF