• Title/Summary/Keyword: 부채널 공격

Search Result 155, Processing Time 0.021 seconds

Compact Implementation of Multiplication on ARM Cortex-M3 Processors (ARM Cortex-M3 상에서 곱셈 연산 최적화 구현)

  • Seo, Hwa-jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1257-1263
    • /
    • 2018
  • Secure authentication technology is a fundamental building block for secure services for Internet of Things devices. Particularly, the multiplication operation is a core operation of public key cryptography, such as RSA, ECC, and SIDH. However, modern low-power processor, namely ARM Cortex-M3 processor, is not secure enough for practical usages, since it executes the multiplication operation in variable-time depending on the input length. When the execution is performed in variable-time, the attacker can extract the password from the measured timing. In order to resolve this issue, recent work presented constant-time solution for multiplication operation. However, the implementation still missed various speed-optimization techniques. In this paper, we analyze previous multiplication methods over ARM Cortex-M3 and provide optimized implementations to accelerate the speed-performance further. The proposed method successfully accelerates the execution-time by up-to 25.7% than previous works.

A High-Performance ECC Processor Supporting Multiple Field Sizes over GF(p) (GF(p) 상의 다중 체 크기를 지원하는 고성능 ECC 프로세서)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.419-426
    • /
    • 2021
  • A high-performance elliptic curve cryptography processor (HP-ECCP) was designed to support five field sizes of 192, 224, 256, 384 and 521 bits over GF(p) defined in NIST FIPS 186-2, and it provides eight modes of arithmetic operations including ECPSM, ECPA, ECPD, MA, MS, MM, MI and MD. In order to make the HP-ECCP resistant to side-channel attacks, a modified left-to-right binary algorithm was used, in which point addition and point doubling operations are uniformly performed regardless of the Hamming weight of private key used for ECPSM. In addition, Karatsuba-Ofman multiplication algorithm (KOMA), Lazy reduction and Nikhilam division algorithms were adopted for designing high-performance modular multiplier that is the core arithmetic block for elliptic curve point operations. The HP-ECCP synthesized using a 180-nm CMOS cell library occupied 620,846 gate equivalents with a clock frequency of 67 MHz, and it was evaluated that an ECPSM with a field size of 256 bits can be computed 2,200 times per second.

Deep Learning Based Side-Channel Analysis for Recent Masking Countermeasure on SIKE (SIKE에서의 최신 마스킹 대응기법에 대한 딥러닝 기반 부채널 전력 분석)

  • Woosang Im;Jaeyoung Jang;Hyunil Kim;Changho Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • Recently, the development of quantum computers means a great threat to existing public key system based on discrete algebra problems or factorization problems. Accordingly, NIST is currently in the process of contesting and screening PQC(Post Quantum Cryptography) that can be implemented in both the computing environment and the upcoming quantum computing environment. Among them, SIKE is the only Isogeny-based cipher and has the advantage of a shorter public key compared to other PQC with the same safety. However, like conventional cryptographic algorithms, all quantum-resistant ciphers must be safe for existing cryptanlysis. In this paper, we studied power analysis-based cryptographic analysis techniques for SIKE, and notably we analyzed SIKE through wavelet transformation and deep learning-based clustering power analysis. As a result, the analysis success rate was close to 100% even in SIKE with applied masking response techniques that defend the accuracy of existing clustering power analysis techniques to around 50%, and it was confirmed that was the strongest attack on SIKE.

Performance Enhancement of Differential Power Analysis Attack with Signal Companding Methods (신호 압신법을 이용한 차분전력분석 공격성능 향상)

  • Ryoo, Jeong-Choon;Han, Dong-Guk;Kim, Sung-Kyoung;Kim, Hee-Seok;Kim, Tae-Hyun;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.39-47
    • /
    • 2008
  • Among previous Side Channel Analysis (SCA) methods, Differential Power Analysis (DPA) based on the statistical characteristics of collected signals has been known as an efficient attack for uncovering secret key of cryptosystems. However, the attack performance of this method is affected very much by the temporal misalignment and noise of collected side channel signals. In this paper, we propose a new method to surmount the noise problem in DPA. The performance of the proposed method is then evaluated while analyzing the power consumption signals of Micro-controller chips during a DES operation. Its performance is then compared to that of the original DPA in the time and frequency domains. When we compare the experimental results with respect to the needed number of traces to uncover the secret key, our proposed method shows the performance enhancement 33% in the time domain and 50% in the frequency domain.

SPA-Resistant Unsigned Left-to-Right Receding Method (SPA에 안전한 Unsigned Left-to-Right 리코딩 방법)

  • Kim, Sung-Kyoung;Kim, Ho-Won;Chung, Kyo-Il;Lim, Jong-In;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.21-32
    • /
    • 2007
  • Vuillaume-Okeya presented unsigned receding methods for protecting modular exponentiations against side channel attacks, which are suitable for tamper-resistant implementations of RSA or DSA which does not benefit from cheap inversions. The proposed method was using a signed representation with digits set ${1,2,{\cdots},2^{\omega}-1}$, where 0 is absent. This receding method was designed to be computed only from the right-to-left, i.e., it is necessary to finish the receding and to store the receded string before starting the left-to-right evaluation stage. This paper describes new receding methods for producing SPA-resistant unsigned representations which are scanned from left to right contrary to the previous ones. Our contributions are as follows; (1) SPA-resistant unsigned left-to-right receding with general width-${\omega}$, (2) special case when ${\omega}=1$, i.e., unsigned binary representation using the digit set {1,2}, (3) SPA-resistant unsigned left-to-right Comb receding, (4) extension to unsigned radix-${\gamma}$ left-to-right receding secure against SPA. Hence, these left-to-right methods are suitable for implementing on memory limited devices such as smartcards and sensor nodes