• Title/Summary/Keyword: 부착 슬립

Search Result 88, Processing Time 0.04 seconds

An Experimental Study for Bond Characteristics of Deformed Bar Embedded in Donut Type Biaxial Hollow Slab (도넛형 이방향 중공슬래브의 부착특성에 관한 실험적 연구)

  • Chung, Joo-Hong;Kang, Sung-Hoon;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study investigated the bond characteristics of embedded deformed steel bar in donut type biaxial hollow slabs. The donut type hollow sphere make concrete inner cover formed between steel bar and hollow sphere due to the hollow shape and arrangement. Generally, inner cover was thinner than outer cover, and some part of donut type biaxial hollow slab has smaller inner cover thickness than $2.5d_b$. It was affected to the bond condition of deformed bar. Furthermore, inner cover thickness changes along the longitudinal deformed bar due to hollow shape. Therefore, donut type hollow slab was divided 3 regions according to the hollow shape such as insufficient region, transition region, sufficient region. Pull-out test were performed to find out the effect of bond condition by the region. Main parameters are inner cover thickness, embedded length and bond location. Bond characteristics of donut type biaxial hollow slab were confirmed through comparison of bond stress-slip relationship, maximum bond strength and bond stress distribution of each regions. And the calculation method of bond strength of donut type biaxial hollow slab was suggested based on the test results.

A Theoretical Model for the Bond Behavior of Reinforced Concrete Members (철근 콘크리트 부재의 부착거동에 관한 해석모델)

  • 오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.77-86
    • /
    • 1991
  • 철근 콘크리트 부재의 부착거동은 철근 콘크리트 구조물을 역학적 거동을 규명하는데 매우 중요한 요소가 된다. 본 논문에서는 이러한 철근 콘크리트의 부착거동을 서술할 수 있는 이론모델을 유도하여 제시하였다. 본 해석모델은 철근 콘크리트부재의 위치에 따라 다랄지는 국부 부착응력과 부착슬립의 관계를 나타내주고 있으며, 이에 대한 실험결과를 잘 설명하고 있음을 보여주고 있다. 본 부착해석모델은 철근콘크리트 구조물의 좀더 정확한 해석과 설계를 가능케 할 것으로 사료된다.

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Evaluation of Residual Bond Stress between Carbon-fiber Reinforced Polymer and Steel Rebar Using Ultra-High-Performance-Concrete after Elevated Temperature (초고강도 콘크리트를 활용한 고온가열 이후의 탄소 보강근과 철근의 잔류 부착성능 평가)

  • Yoo, Sun-Jae;Lee, Ho-Jin;Yuan, Tian-Feng;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.169-176
    • /
    • 2021
  • In this study, pull-out tests were conducted at room temperature, 150 ℃ and 250 ℃ to evaluate the residual bond strength of carbon fiber reinforcement polymer, CFRP after elevated temperature and deformed steel rebar of D10 and D13 were also evaluated after the high temperature heating for comparison. As a result of the experiment, the bond strength of the CFRP after 150 ℃ and 250 ℃ decreased by 9.94 % and 41 %, respectively. On the other hand, after thermal heating, both the steel rebar of D10 and D13 had a lower rate of reduction in bond strength than that of the CFRP. Also slip at the maximum bond strength also decreased after the heating for both the CFRP and the rebars. Through it, the correlation between the bond strength and the slip reduction due to thermal heating was confirmed and bond slip models were presented. Finally the experimental result was evaluated as relative bond strength to identify the residual bond performance of the CFRP and the rebar after the heating was confirmed by comparing with the existing test result of the bond strength after elevated temperature.

Tests on Transfer Bond Performance of Epoxy Coated Prestressing Strands (에폭시 코팅 처리된 PS강선의 정착부착성능 실험)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.89-100
    • /
    • 1994
  • The current test procedure for transfer length, which determine transfer length by measuring concrete strain, has an actual bond stress state in the prestressed pretensioned member : however, it is difficult to determine the bond properties of maximum bond stress and bond stiffness with this method. It is also difficult for design engineer to understand and select a correct safety criterion from the widely distributed results of such a ransfer test alone. An alternative testing procedure is provided here to determine the bond properties without measuring the concrete strain. In this test the bond stress is measured directly by creating a similar boundary condition within the transfer length in a real beam during the transfer of prestressing force. The prestressing force was released step by step by step from the unloading side. The release of force induces a swelling of the strand at the unloading side of concrete block, bonding force in the block, and a bond slip of the strand toward the other side of the block. Two center-hole load cells are used to record the end loads until the point of general bond slip(maximum bond stress). It is suggested that this test procedure be performed with the ordinary transfer test when determining the transfer length in a prestressed, pretensioned concrete beam.

Flexural Behavior of Encased Composite Beams with Partial Shear Interaction (매립형 불완전 합성보의 휨 거동 예측)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.747-757
    • /
    • 2004
  • With steel and concrete composite beams, the incomplete interaction between the steel and the concrete slab leads to an appreciable increase in beam deflections. Moreover, encased composite beams using a deep deck plate or hollow-core PC slabs are critical to deflection due to their inherent geometry. In this paper, by using the calculation tools that were developed for a previous study on the deflection of encased composite beams considering the slip effects and load-slip curve, the shear bond stress and additional deflection induced due to interface slip of the encased composite beam are presented. It was found that the slip effects significantly contribute to the encased composite beam deflections and result in stiffness reduction of up to 30% compared to that of full shear interaction beams. The predicted results were compared with the measurement of 18 specimens tested in this study, and comparisons show a high degree of accuracy, within 6%.

A Study on the Composite Behavior of Steel-Concrete with Slip Anchor (슬립앵커를 이용한 강-콘크리트 합성 거동 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Kim, Seung-Jun;Han, Seung-Ryong;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 2011
  • Presently, composite method for steel and concrete is often used the stud. Steel properties of composite column could be changed by increasing of welding. The changed properties is possibly to cause local-buckling. Composite column had a large effect by slip instead of pull-out force in comparison composite girder. Improvement of adhesive force had effect by contact area rather than height of stud in composite column. This paper proposed new type of stud and analyzed performance through experimental study. This method would be effect steel structure with curvature.

Nonlinear Analysis of Concrete Girders Strengthened with Unboded Prestressed CFRP Plates (비부착 프리스트레스트 CFRP 판으로 보강된 콘크리트 거더의 비선형 해석)

  • Choi, Kyu-Chon;Lee, Jae Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.495-502
    • /
    • 2010
  • A study for the nonlinear analysis method of flexural behavior of concrete girders strengthened with unbonded prestressed CFRP plates is presented. The concrete girders strengthened with unbonded prestressed CFRP plates exhibit more complex nonlinear behavior due to the slip between the concrete girder and the CFRP plates than the case of bonded CFRP plates. The unbonded CFRP plate is modeled as an assemblage of the curved elements both ends of which are rigidly linked to the nodes of fibered frame elements. The slip effect of the unbonded CFRP plate is taken into account using the force equilibrium relationship at each node. To evaluate the validity and the capability of the proposed analysis method, the ultimate analysis results of the concrete beams strengthened with unbonded prestressed CFRP plate are compared with the experimental results obtained from other investigators. The proposed analysis method is found to predict ultimate behaviors of these beams fairly well. Additionally the time-dependent deformations of the concrete beam seems to have little influence on the ultimate behaviors of concrete beams strengthened with unbonded prestressed CFRP plate, and the cracks of the concrete beam which occurred before strengthening it with CFRP plate are found to have almost no influence on the ultimate capacity of the beam.

An Experiment on Bond Behaviours of Reinforcements Embedded in Geopolymer Concrete Using Direct Pull-out Test (직접 인발 시험을 이용한 지오폴리머 콘크리트의 부착 특성 실험)

  • Kim, Jee-Sang;Park, Jong-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.454-462
    • /
    • 2016
  • Geopolymer concrete is a new class of construction materials that has emerged as an alternative to ordinary Portland cement concrete to reduce the emission of $CO_2$ in the production of concrete. Many researches have been carried out on material developments of geopolymer concrete, however a few studies have been reported on the structural use of them. This paper presents an experiment on the bond behaviors of reinforcements embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strength levels of geopolymer concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure the bond strength and slips between concrete and reinforcements. As the compressive strength levels of geopolymer concrete increase, the bond strength between geopolymer concrete and reinforcement increase. The bond strengths decrease as the diameters of reinforcements increase, which is similar in normal concrete. Also, an estimation equation for the basic development length of reinforcement embedded in geopolymer concrete is proposed based on the experimental results in this study.