• Title/Summary/Keyword: 부착응력-미끄럼 모델

Search Result 7, Processing Time 0.034 seconds

Bond Stress-Slip Model for Serviceability Verification on Structural Concrete Members (철근콘크리트 부재의 사용성능 검증을 위한 부착응력-미끄럼 모델)

  • Lee, Gi-Yeol;Yang, Jun-Ho;Chung, Won-Yong;Rho, Sam-Young;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.17-18
    • /
    • 2009
  • This research defined slip function using cracking behavior, bond characteristics and numerical analysis of cracking stabilized reinforced concrete member, and proposed a bond stres-slip model.

  • PDF

Bond-Slip Model for CFRP Sheet-Concrete Adhesive Joint (탄소섬유쉬트-콘크리트 부착이음의 부착 모델)

  • Cho, Jeong-Rae;Cho, Keunhee;Park, Young-Hwan;Park, Jong-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.285-292
    • /
    • 2006
  • In this study, a method determining the local bond-slip model from pure shear test results of CFRP sheet-concrete adhesive joints is proposed and local bond-slip models are presented. Adhesive joints with a specific bond-slip model, which is assumed as multi-linear curve in order to represent arbitary function, are solved numerically. The difference between the solution and test results are minimized for finding the bond-slip model. The model with bilinear curve is also optimized to verify the improvement of multi-linear model. The selected test results are ultimate load-adhesive length curves from a series of adhesive joints and load-displacement curves for each joint. The optimization problem is formulated by physical programming, and the optimized bond-slip model is found using genetic algorithm.

Bond Stress in Concrete Pilled Steel Tubular Column (CFT 기둥의 부착응력에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • CFT column has excellent structural properties due to the composite action between concrete and steel tube. The bond behavior between the constituent elements has to be found for analyzing the behavior of CFT column. A new model is necessary because most of existing models for bond stress-slip relationship of the deformed bar cannot be applied to the CFT column. Therefore, the objective of this research is to develop a new model related to the bond behavior of CFT column considering the relation between bond stress and vertical stress, and the distribution of lateral stress under the confinement created by steel casing. From equilibrium condition, the formula for relationship between bond stress and vertical stress is derived, and the relationship for the lateral stresses of the CFT column section is obtained by an Airy stress function. The experiments are performed for five CFT column specimens axially loading on concrete alone. The relation between bond strength and lateral stress is investigated from the regression analysis using the measured strains. Finally a new bond strength model is proposed, which is able to predict the relationship for the stress of each direction of CFT column loading on concrete.

FE Analysis of RC Beams Strengthened with Carbon Fiber Sheet (탄소섬유쉬트로 보강된 RC 보의 유한요소해석)

  • 한상호;이경동
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • Carbon fiber sheet has been used to rehabilitate many types of reinforced concrete members with its superior characteristics such as their lightweight, high strength, corrosion resistance, and easy execution. But the failure behavior of reinforced concrete members show a high variation by the bond characteristics between carbon fiber sheet and concrete surface. In this study, a bond stress-slip model, which accounts for changes in bonding behavior between concrete and carbon fiber sheet with some link elements, is proposed. The link elements are used to represent the concrete-carbon fiber sheet interface. To investigate the efficiency of this method, the analytical solutions for the behavior of reinforced concrete beam strengthened with carbon fiber sheet are compared with experimental ones. Results from the proposed model comparatively well agree with the experimental results.

Finite Element Analysis of RC Structures considering Bond Characteristics (부착특성을 고려한 RC구조물의 유한요소 해석)

  • 한상호
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.157-164
    • /
    • 1997
  • 일반적으로 콘크리트와 철근간의 경계면을 나타내는 유한요소법에는 균열의 부근에서 발생하는 부착열화 현상을 고려하지 않고 있다. 이것은 균열 부근에서 과도한 부착을 초래하고 , 국소 변형과 균열의 진전에도 영향을 준다. 본 연구에서는 철근콘크리트 구조물의 균열부근에서 일어나는 부착거동의 변화를 고려한 비선형 부착응력-미끄럼 모델을 제안하였다. 철근과 콘크리트간의 경계면에는 링크요소를 이용하였고, 링크의 특성은 철근을 가로지르는 균열의 상태에 따라 변하도록 조정하였다. 균열의 형성상태를 정량화하고, 부착거동을 두 포락선 1) 균열로부터 충분히 떨어진 위치에서의 부착상태를 모델링한 외연포락선, 2)횡균열면에 있어서의 부착상태를 모델링한 내연포락선의 사이에 변이시키기 위하여 비국소적 손상도 개념을 도입하였다. 이 방법의 유효성을 알아보기 위하여 편재하중을 받는 T형 교각의 실험 및 해석결과를 제시하였다. 제안된 모델의 결과를 실험결과와 비교하여 본 모델의 유용성을 검증하였다.

Local Bond Stress-Slip Model of GFRP Rebars (GFRP 보강근의 부착응력-미끄럼 모델)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.133-136
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Glass Fiber Reinforced Polymer (GFRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of GFRP. However, there remain various aspects of GFRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between GFRP and concrete. In this study, the bond-behavior of GFRP bars in concrete is investigated via the pullout test with varying parameters: surface condition of GFRP bars and concrete compression strength. And the local bond-stress model of GFRP rabars with applying monotonc load was also derived from the present test.

  • PDF

Long-Term Behavior of Square CFT Columns under Concentric Load (중심축 하중을 받는 각형 CFT 기둥의 장기거동에 관한 연구)

  • Kwon Seung-Hee;Kim Tae-Hwan;Lee Tae-Gyu;Kim Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.281-290
    • /
    • 2005
  • This paper presents experimental and analytical studies on long-term behavior of square CFT columns under central axial loading. Two loading cases are considered; (1) the load applied only at the inner concrete of the column and (2) the load applied simultaneously on both the concrete and the steel tube. Four specimens of square CFT columns were tested under the two loading cases, and basic creep test for two concrete specimens was performed to find out the creep properties of the inner concrete. Three-dimensional finite element analysis models were established and verified with the experimental results. The verification shows that the prediction for the long-term behavior of actual square CFT columns is possible from the three dimensional finite element modeling considering the bond behavior between steel tube and inner concrete. Also, experimental results and numerical calculations revealed that the bond stress Induced by the confinement pressure as well as the slip between inner concrete and steel tube were increased with time In the first loading case. However, the confinement by the loading Plate was decreased with time while increasing confinement effect by the steel tube was observed over time. In contrast no confinement effects occur in the second loading case.