• Title/Summary/Keyword: 부착모르타르

Search Result 112, Processing Time 0.03 seconds

The Surface Sealing Performance of Film, Air cap and Polystyrene foam for Preventing Carbonation of High-Volume Slag Concrete (고로슬래그 미분말 다량치환 콘크리트의 탄산화 억제를 위한 기밀성 향상재 부착효과)

  • Han, Dongyeop;Kim, Kyunghoon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The goal of this research was evaluating and suggesting the solution of preventing carbonation of concrete replaced high-volume of slag. The concrete mixtures were prepared with high-volume slag and recycled aggregate, and the concrete samples were evaluated the carbonation depth with various surface treatment methods. For various surface treatment methods and surface protecting sheets, bonding strength and carbonation depth were measured. Basically, from the results, the carbonation of concrete was completely prevented with any type of surface treatment method and surface protecting sheet as far as the surface treatment materials were remained. Therefore, in this research, it was known and suggested that the easiness of handling and sufficient bonding performance was much important than the quality of surface protecting sheets.

Compressive Strength Properties of Concrete Using High Early Strength Cement and Recycled Aggregate with Steam Curing Conditions (조강시멘트와 순환골재를 적용한 콘크리트의 증기양생조건별 압축강도 특성)

  • Kim, Yong-Jae;Kim, Seung-Won;Park, Cheol-Woo;Sim, Jong-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.76-81
    • /
    • 2016
  • Recycled aggregate is a valuable resource in Korea in lack of natural aggregate. Government recognizes the importance and suggests various policies enhancing its use for higher value-added application. Most of recycled aggregate produced currently in Korea, however, is applied for low value-added uses such as embankment, reclamation, etc. Its higher valued application such as for structural concrete is very limited. Although domestic manufacturing technology of recycled aggregate is at the world level, recycled aggregate is not applied for structural concrete. Primary reasons for the limited use of the recycled aggregate include bonded mortar and cracks occurred during crushing and hence it is very difficult to predict and control the quality of recycled aggregate concrete. This research intended to grasp combined characteristics of recycled aggregate, high early strength cement, maximum temperature and time duration of steam curing and then, analyze the effects of factors. Also, it suggested the method to improve field applicability of recycled aggregate concrete.

Application of Nylon Fiber for Performance Improvement of Recycled Coarse Aggregate Concrete (순환 굵은골재 사용 콘크리트의 성능향상을 위한 나일론 섬유의 적용성 연구)

  • Lee, Seung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.785-792
    • /
    • 2017
  • In recent times, the lack of good quality natural aggregate has led to the alternative use of recycled aggregate. However, the adhered mortars in recycled aggregate lower the performance of the concrete, such as by reducing its strength and causing deterioration and cracking. In this study, the effects of nylon fiber (NF) on the mechanical and durable performance of recycled coarse aggregate concrete (RAC) were experimentally examined. Concrete specimens with natural coarse aggregate (NA) or RA were produced by adding 0, 0.6 and $1.2kg/m^3$ of NF. Various mechanical properties and the durability of the RAC were measured and compared with those of the NAC. In addition, in order to observe the hydrates and ITZ, SEM observations were made of the 28-day concrete samples. From the test results, as expected, it was found that the RAC exhibited lower performance than the NAC. However, the addition of NF to the concrete was effective in significantly enhancing the performance of the RAC due to the bridge effect of the NF.

Evaluation of Durability and Bond Strength of Polymer Powder-Modified Mortars With Accelerators (급결제를 이용한 분말수지 혼입 폴리머 시멘트 모르타르의 부착강도 및 내구성 평가)

  • Lee Chol Woong;Mun Kyoung Ju;Song Hun;Kim Byeang Cheol;Choi Nak Woon;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.559-562
    • /
    • 2005
  • The purpose of this study is to evaluate the durability and bond strength of polymer powder-modified mortars with special accelerator components. The mortars were prepared with various polymer-binder ratios and applied to the concrete substrate as a repair material. Bond strength, flexural and compressive strengths, freeze-thaw resistance and carbonation resistance were measured for the test. As a result, bond strength of the mortars was increased with an increase in the polymer-cement ratio, and freeze-thaw resistance and carbonation resistance were significantly improved with increasing polymer-cement ratio also.

  • PDF

Property of recycled aggregates for concrete by gravity separation (비중선별에 의한 콘크리트용 순환골재의 물성)

  • Kong, Kyoung-Rok;Park, Mi-Jung;Kim, Chang-Soo;Kang, Heon-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.355-356
    • /
    • 2009
  • The recycled aggregates include a lot of aggregates for concrete. Using the heavy medium separation method that is one of the specific gravity separation methods, about 45% of the waste concrete could be converted to the recycled aggregates.

  • PDF

An Experimental Study on the Relationship Between Physical Property of Recycled Aggregates and an Amount of Mortar Attached to the Original Aggregate (재생골재의 물리적 성질과 모르타르 부착양의 관계에 대한 실험적 연구)

  • Kim Hyun-Ho;Yang Keun-Hyeok;Kang Kyung-In;Jung Sang-Jin;Chung Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.141-144
    • /
    • 2005
  • This paper reports the results of experimental study on the effect of an amount of mortar attached to the surface of original aggregate on the physical properties of recycled aggregates such as specific gravity, and water absorption. An amount of attached mortar was evaluated by hydrochloric acid precipitation method. Test results indicated that a water absorption of recycled aggregates was proportional to the amount of mortar attached to the original aggregate.

  • PDF

Strength Properties of High-Strength Polymer Cement Mortars Containing VAE Powder (VAE계 분말을 혼입한 고강도 폴리머 시멘트 모르타르의 강도 특성)

  • Choi, Jung-Gu;Lee, Gun-Cheol;Lee, Gun-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.19-20
    • /
    • 2014
  • This study is to find out the tensile strength and bonding strength of VAE powder as a preliminary study for the application of the powder to the high strength concrete. The result of the study showed that the compressive strength decreases when more polymers is put into the concrete. On the other hand, it showed that the tensile strength and the bonding strength get improved when the more polymers are put into the concrete. Especially in case of the mixture for high strength concrete, it was found out that more strength is produced than the ordinary concrete.

  • PDF

The experimental regarding the affix mortar quanity measurement of the recycled fine aggregate (재생(순환)잔골재의 부착모르타르량 측정에 관한 실험적 연구)

  • Cho Hyun Dae;Jaung Jae Dong;Lee Do Heun;Jun Myoung Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.189-192
    • /
    • 2004
  • This study bases on showing the pictures of how to keep a recycled fine aggregate well (quality control) and how to invent the measurement of mortar's quantities which largely effect on basic properties of matter: strength, durability and so on. As a result of the experiment by immersion, quantities of adhesive cement takes 7 to 8 days to stabilize by sulfuric. However, by hydrochloric acid, it takes a little quicker due to the first quick reaction, aggregate of the measurement of adhesive mortar by immersion used acid liquids are likely applicable following a suitable inspection and complementarity.

  • PDF

Predicting Compressive Strength of Fly Ash Mortar Considering Fly Ash Fineness (플라이 애시 미세도를 고려한 플라이 애시 모르타르의 압축 강도 예측)

  • Sun, Yang;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.90-91
    • /
    • 2020
  • Utilization of upgraded fine fly ash in cement-based materials has been proved by many researchers as an effective method to improve compressive strength of cement based materials at early ages. The addition of fine fly ash has introduced dilution effect, enhanced pozzolanic reaction effect, nucleation effect and physical filling effect into cement-fly ash system. In this study, an integrated reaction model is adpoted to quantify the contributions from cement hydration and pozzolanic reaction to compressive strength. A modified model related to the physical filling effect is utilized to calculate the compressive strength increment considering the gradual dissolution of fly ash particles. Via combination of these two parts, a numerical model has been proposed to predict the compressive strength development of fine fly ash mortar considering fly ash fineness. The reliability of the model is validated through good agreement with the experimental results from previous articles.

  • PDF

An Experimental Study on the Physical Property of Non-Vulcanized Waterproofing Synthetic Rubber Sheet for the Underground Concrete Wall (지하 콘크리트 벽체용 미가황 합성고무시트 방수재의 물성에 관한 실험적 연구)

  • Choi, Eun Su;Lee, Dae Woo;Seo, Sang Kyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.69-78
    • /
    • 2012
  • This paper study on the physical property of naturally vulcanizing waterproofing synthetic rubber sheet for the underground concrete wall. In order to finding the naturally vulcanizing time, the relation of vulcanizing time and tensile strength is analysed from non-vulcanizing to naturally vulcanizing time. Physical tests such as tensile strength, tear strength: etc., under the thermal environment temperature at $-20^{\circ}C$, $-10^{\circ}C$, $20^{\circ}C$, $60^{\circ}C$. The result of experiment show that the developed rubber sheet has the delay time about 85 days and the curing time about 35 days. The tensile strength increased by about 692% and coefficient of expansion decreased by about 10% which value can be sufficiently compensate the demerit of vulcanized rubber sheet. Also, all of the physical properties of the naturally rubber sheet satisfy the KS standard and compare to the vulcanized rubber sheet, the developed naturally rubber sheet have excellent durability.