• Title/Summary/Keyword: 부착돌말

Search Result 6, Processing Time 0.026 seconds

The Epilithic Diatom Community and Biological Water Quality Assessment of Naeseongcheon Located at the Upper Region of Nakdong River (낙동강 상류 수계인 내성천의 부착돌말 군집과 부착돌말지수를 이용한 생물학적 수질평가)

  • Choi, Jae sin;Lee, Jae hak;Kim, Han-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.470-477
    • /
    • 2017
  • The aims of this study were to analyze the physico-chemical factors and the characteristics of epilithic diatom community from 15 sites of the Naeseongcheon and tributaries located in the upper region of the Nakdong river from May to October 2016. The biological water quality was assessed using DAIpo and TDI. A total of 163 diatom taxa were identified with 2 orders, 3 suborders, 9 families, 35 genera, 145 species, 16 varieties and 2 forms. Cocconeis placentula var. lineata appeared at every examined sites. Achnanthes lanceolata, Nitzschia fonticola, Nitzschia inconspicua and Reimeria sinuata were common taxa of the Naeseongcheon. Nitzschia inconspicua and Achnanthes minutissima were major dominant species. As a result of the CCA, Electrical conductivity and total nitrogen concentration were important factors determining the diatom species composition. In the result of the biological assessment using DAIpo, the Naeseongcheon was rated at class B with an average of 62.38. In the result of assessment using TDI, the Naeseongcheon was rated at class C with an average of 66.12.

Water Quality and Epilithic Diatom Community in the Lower Stream near the South Harbor System of Korean Peninsula (한반도 서남부 하천 하구역의 수질 및 부착돌말 군집 특성)

  • Kim, Ha-Kyung;Lee, Min-Hyuk;Kim, Yong-Jae;Won, Du-Hee;Hwang, Soon-Jin;Hwang, Su-Ok;Kim, Sang-Hoon;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.551-560
    • /
    • 2013
  • Environmental factors and epilithic diatom communities in the lower streams near the harbor region of South Korean peninsula were examined during no monsoon period in May 2013. The sampling of water and epilithic diatoms was conducted at both streams, 19 regulated streams (RS) that there are one or several dams constructed in the river system, and 19 un-regulated streams (US) that there are no dams within the river. A cluster analysis based on the number of species and abundance of epilithic diatoms through the stations, divided into three groups such as groups I (mainly US), II (mixed with US and RS) and III (mainly RS), respectively. Group I showed that water quality is good and high diversity of diatom, while Group II and III was water quality is relatively poor, but not differed in biomass of diatom from Group I. In addition, Group II that had high conductivity, nitrogen and phosphorus, was the lowest in diatom diversity among them. Dominant species were Nitzschia palea (17%) and Navicula seminuloides (11%) in Group I, Nitzschia inconspicua (19%) and Navicula perminuta (9%) in Group II, and Nitzschia inconspicua (15%) and Nitzschia palea (14%) in Group III, respectively. These taxa were widely distributed in brackish water, and not closely related with specific water quality, like eutrophic water. However, the groups II and III belonged to RS, had not only little biomass, but bad water quality such as high concentrations of nutrient and chlorophyll-a. Therefore, to determine the effect of dam construction on the lower water ecosystem, the planktonic algae, which can occur algal bloom in the estuary, also was considered to be a parallel investigation.

Wetland Habitat Assessement Utilizing TDI(Trophic Diatom Index) (부착돌말영양지수(TDI)를 활용한 습지환경 평가)

  • Kim, Seong-Ki;Choi, Jong-Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.525-538
    • /
    • 2019
  • The purpose of this study was to analyze the habitat status and species diversity of benthic diatoms and estimate the applicability of TDI (Trophic Diatom Index) to obtain the basic data for the identification and management of created wetlands in the Nakdong River. We observed a total of 38 families and 173 species of benthic diatom during the survey period, and spring and autumn showed a similar number of species of 156 and 154, respectively. The result of the SOM (Self-Organizing Map) analysis showed that the distribution of benthic diatom was sensitive to environmental factors such as nutrient concentration and rainfall in each wetland. The cluster 1 was characterized by the survey sites of autumn mostly and consisted of points of high TDI, although the nutrients such as total phosphorus and total nitrogen were low, and the species number and abundance of diatoms were low. Conversely, cluster 4 was characterized by the survey sites of spring mostly and consisted of points of low TDI, even though total nitrogen was high. Considering that most of the created wetlands had the reduced inflow and outflow, the increased flow rate in the summer lowers nutrient values in autumn, and the species number and abundance of benthic diatom decreases due to the increase of turbidity, which reduces the light penetrations to the substrates. On the contrary, the TDI value is low in spring because the low water level causes insufficient substrate surface to the benthic diatoms, and it is too early for the establishment and development of saprophilous species. Although various studies have used TDI as an indicator for evaluating the habitat environment and water quality, it is not a good evaluation indicator in this study since the nutrient concentration in the wetlands mostly high as they have a low flow rate and are close to the stagnant area. Nevertheless, additional periodic surveys that comprehensively reflect the fact that the summer rainfall and inflow/outflow regulating function might affect the species diversity and distribution of benthic diatoms are necessary.

Assessment of Biological Water Quality Using Epilithic Diatoms in the Upper Region of Nakdong River (낙동강 상류 수계에서 부착돌말류를 이용한 생물학적 수질 평가)

  • Choi, Jaesin;Chae, Hyunsik;Kim, Han-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.169-182
    • /
    • 2019
  • This study assessed biological water quality using epilithic diatoms in the Yeong river, Naeseong stream and Wi stream in the upper region of the Nakdong river from May to October 2016. Epilithic diatoms were not mobile, so they could reflect long-term water quality. The sampled epilithic diatoms were identified a total 158 taxa which were composed to 2 orders, 3 suborders, 8 families, 34 genera, 143 species and 15 varieties. Dominant species were Achnanthes convergens and Achnanthes minutissima at Yeong river, Nitzschia inconspicua at Naeseong stream, and Achnanthes minutissima, Cocconeis placentula var. lineata and Navicula minima at Wi stream. As a result of the CCA, Electrical conductivity, total nitrogen and total phosphorus were important factors determining the diatom species composition in the upper region of the Nakdong river. The correlation between diatom indices (DAIpo & TDI) measured to be high in the correlation coefficient (0.87) from the result of correlation analysis. In the result of the assessment of biological water quality using DAIpo and TDI, Yeong river was rated as class A at most sites. Naeseong stream was rated as class C to D at all sites except for N1 which was rated as Class A. Wi stream was rated as class B to C for DAIpo of W1, and TDI was rated as class D. The assessment of biological water quality at this site showed inferior TDI result compared to that of DAIpo. DAIpo and TDI of W2 were rated as class A to D, and the water quality has changed a lot. W3 and W4 were mostly rated as class B and C respectively.

The Effect of Drought Simulated by Discharge Control on Water Quality and Benthic Diatom Community in the Indoor Experimental Channel (인공하천에서 유량감소로 모사한 가뭄효과가 수질 및 부착돌말류 군집에 미치는 영향)

  • Park, Hye-Jin;Kim, Baik-Ho;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.129-138
    • /
    • 2012
  • We investigated an ecological impact of drought simulated by discharge depletion on the water quality and benthic diatom community in the indoor experimental channel. As artificial substrates slide-glass was installed in acrylic channel for 16 days. Channels were supplied continuously with eutrophic lake water with a discharge rate of 6 L $min^{-1}$ in duplication during the colonized period. And then during the discharge depletion period, three discharge rates were provided: NDF (No depletion of flow rate (Control): 6 L $min^{-1}$), LDF (Low depletion of flow rate: 3 L $min^{-1}$) and HDF (High depletion of flow rate: 1 L $min^{-1}$). Environmental factors in the water, such as suspended solid, Chl-$a$ and nutrients concentration, were measured with periphytic algae including AFDM (ash free dry matter), Chl-$a$ concentration and cell density at 1-day intervals. Light intensity increased significantly with discharge depletion (F=229.5, p= 0.000). $NH_4$-N concentration was highest at HDF. Suspended solid in outflowing water decreased at HDF (88%), LDF (97%) and NDF (99%), compared to inflowing water (100 %). Chl-$a$ in substrates increased more than two times at LDF and HDF than NDF (F= 8.399, p=0.001). Also AFDM and benthic diatom density increased significantly at LDF and HDF than NDF (F=9.390, p=0.001; F=6.088, p=0.007). In all experimental groups, $Aulacoseira$ $ambigua$, $Achnanthes$ $minutissima$ and $Aulacoseira$ $granulata$ were dominant species accounting for greater than 10% of benthic diatom density. The most dominant species, $A.$ $ambigua$ was highest at LDF, followed by HDF and NDF (F=8.551, p=0.001). In conclusion, the effect of drought simulated by discharge depletion in an artificial stream ecosystem caused significant changes on water quality and benthic diatom biomass. This result provides a useful data to understand the effect of draught on stream ecosystem in situ.

Spatial and Temporal Distribution of Epilithic Diatom Communities in Major Harbors of Korean Peninsula (국내 하구역 부착돌말의 시, 공간적 분포에 미치는 몬순의 영향)

  • Kim, Ha-Kyung;Kim, Yong-Jae;Won, Du-Hee;Hwang, Soon-Jin;Hwang, Su-Ok;Kim, Baik-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.598-609
    • /
    • 2013
  • Spatial and temporal distribution of environmental factors and epilithic diatom communities in major rivers (30 rivers and 58 sampling points) of the Korean peninsula were surveyed each one time before (May) and after the monsoon (October) 2012. The stream of the east harbor (EAST), the south harbor (SOUTH), and the west harbor (WEST) was sampled in order. Over the survey, a total of 284 taxa were classified, and the number of diatom species in each harbor did not show significant changes after the monsoon, but a biomass significantly decreased. Results also showed that EAST deterioration of water quality and chlorophyll-a after the monsoon, was opposite to SOUTH. Five major dominant species including Nitzschia inconspicua, which contained higher biomass over the survey, were common species which widely distributed in brackish water. Indicator Species Analysis showed that a large number of clean water species in EAST and polluted water species in SOUTH and WEST were emerged respectively. In sum, the Asian monsoon significantly decreased a biomass of epilithic diatoms and water qualities over the harbors (lower stream) in the Korean peninsula, but did not change the major species indicating water quality.