• Title/Summary/Keyword: 부착긴장재

Search Result 43, Processing Time 0.027 seconds

Evaluation of Ultimate Stress of Unbonded Tendon in Prestressed Concrete Members (II) -Proposed Design Equation using Strain Compatibility (프리트레스트 콘크리트 부재에서 비 부착 긴장재의 극한응력 평가에 관한 연구(II))

  • 임재형;문정호;음성우;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.105-114
    • /
    • 1997
  • 본 연구는 비부착 긴장재를 갖는 부재에 대한 일련의 연구중 두 번째에 해당한다. 첫 번째 연구(1)에서는 기존연구의 제안식과 현행의 ACI 규준의 문제점을 고찰하고 기존의 총 167개 실험결과와 비교·분석하였다. 본 연구에서는 소성힌지 길이 개념과 변형도 적합조건에 의해서 비부착 긴장재의 응력을 평가할 수 있는 방법에 대한 검토를 통하여, 새로운 설계식을 제안하였다. 이는 이론적인 분석에 의한 변수설정과 기존 실험결과를 이용한 중회귀분석법을 사용하였다. 그리고 제안된 설계식을 기존의 식들과 비교하여 좋은 결과를 얻었으며, 제안된 설계식의 특성을 다음과 같이 설명하였다. (1)비부착 긴장재의 응력산정시 유효프리스트레스, 일반철근의 양, 작용하중의 형태 등은 중요한 변수로 작용할 수 있으므로 설계식에 고려하는 것이 바람직하다. (2)비부착 긴장재의 응력산정식은 현행 ACI 규준식과는 다르게 fc'/ p항의 제곱근과 비례하는 함수관계에 있다. (3)스팬-춤비가 비부착 긴장재의 응력에 미치는 영향은 소성힌지 길이의 개념에 의해서 역학적으로 타당하게 설명할 수 ldT다.

Experimental Study for Interrelation of Influential Parameters on Unbonded Tendon Stress Variation (비부착 긴장재의 응력변화에 영향을 미치는 변수들의 상호관계에 대한 실험적 고찰)

  • 문정호;이선화;이창규;임재형
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • The purpose of this paper was to investigate the relations between the unbonded tendon stress and the influential parameters which were bonded reinforcement ratio, span/depth ratio, and loading type. To this end, first, the influence of parameters were examined with twenty eight test results obtained from references. Then, an experimental study was carried out with 21 test specimens. The investigation with previous and current tests revealed the followings; (1) The bonded reinforcement ratio and prestressing ratio were proved to be an important variables on the unbonded tendon stress. (2) The ratio of span to depth and type of loading affected partially the unbonded tendon stress although their effects varied depending on bonded reinforcement ratio. (3) AASHTO LRFD Code and Moon/Lim\`s design equation predicted the test results well with some safety margins.

An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type (다양한 표면형상에 따른 FRP 보강재의 부착특성 실험연구)

  • Jung, Woo Tai;Park, Young Hwan;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.279-286
    • /
    • 2011
  • FRP (Fiber Reinforced Polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Material properties of FRP tendons-bond strength, transfer length, development length-must be determined in order to apply to concrete structures. First of all, in case of application for pretension concrete members with CFRP tendons, transfer length is an important characteristic. The bond of the material characteristics should be demanded clearly to apply to PSC structures prestressed with FRP tendons. This paper investigated on the bond characteristics of FRP reinforcements with various surface-type. To determine the bond characteristics of FRP materials used in place of steel reinforcement or prestressing tendon in concrete, pull-out testing suggested by CAN/CSA S806-02 was performed. A total of 40 specimens were made of concrete cube with steel strands, deformed steel bar and 6 different surface shape FRP materials like carbon or E-glass. Results of the bonding tests presented that each specimen showed various behaviors as the bond stress-slip curve and compared with the bond characteristic of CFRP tendon developed in Korea.

Nonlinear Analysis of Prestressed Concrete Containment Structures Considering Slip Behavior of Tendons (긴장재의 슬립거동을 고려한 원자로 격납건물의 비선형 해석)

  • Kwak Hyo-Gyoung;Kim Jae-Hong;Kim Sun-Hoon;Chung Yun-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.335-345
    • /
    • 2005
  • This paper concentrates on the nonlinear analysis of prestressed concrete (PSC) containment structures. Unlike a commercialized program which adopts the perfect bond assumption between concrete and tendon in the analysis of PSC structures, a numerical algorithm to consider the slip effect, simultaneously with the use of commercialized programs such as DIANA and ABAQUS, is introduced in this paper For bonded tendons, the apparent yield stress of an embedded tendon is determined from the bond slip relationship. And for unbonded tendons, Correction for the strength and stiffness of unbonded internal tendons is achieved on the basis of an iteration scheme derived from the slip behavior of tendon along the entire length. Finally, the developed algorithm is applied to two PSC containment structures of PWR and CANDU to verify its efficiency and applicability in simulating the structural behavior of large complex structures, and the obtained result shows that both containment structures represent the ultimate pressure capacity larger than about 3 times of the design pressure.

The Analysis for Reinforced Concrete Beams Strengthened with Externally Unbonded Prestressed CFRP Plates (비부착 탄소섬유판 긴장재로 외부 긴장 보강된 철근콘크리트 보의 해석)

  • Park, Jong Sup;Jung, Woo Tai;Park, Young Hwan;Kim, Chul Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.439-445
    • /
    • 2008
  • This paper suggests a modified bond reduction coefficient considering the average CFRP (Carbon Fiber Reinforced Polymer) strain concept for the unbonded prestressed CFRP plate strengthening system. The strengthened length and the pure bending length were seen to influence the variation of the strain of unbonded CFRP plate. Therefore, a new bond reduction coefficient considering such effect was suggested. Comparison with the experimental data revealed that the analytic results obtained by considering the proposed bond reduction coefficient were effective in estimating the strain of the unbonded CFRP plate in the CFRP plate prestressing system.

Fatigue Test of Domestic CFRP Tendon and Anchorages (CFRP 긴장재 및 정착구의 피로시험)

  • Jung, Woo-Tai;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.421-422
    • /
    • 2009
  • This study investigated the fatigue test of domestic CFRP Tendon and anchorages. Test results revealed that fatigue capacity of anchorages with swage-type and bond-type satisfied the specifications. In domestic CFRP Tendon, fatigue strength of 1 million and 2 million cycle showed 992, 871MPa, respectively.

  • PDF

Experimental Examination of Influential Variables on Unbonded Tendon Stresses (비부착 긴장재의 응력에 영향을 미치는 중요변수에 대한 실험연구)

  • Lim, Jae-Hyung;Moon, Jeong-Ho;Lee, Li-Hyung
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.209-219
    • /
    • 1999
  • This paper describes an experimental study planned to examine the effects of important design variables which were used in the proposed equation by authors. Fourteen beams and slabs were designed with the variables, such as effective prestress, concrete strength, amount of tendons, amount of bonded reinforcements, loading type, and span/depth ratio. Then, deflections and tendon stresses were measured and compared according to the parametric variations of the selected variables. It was found that the tendon stress increment decreases as the level of effective prestress or the amount of unbonded tendons and bonded reinforcements increases. Also, the contributions of concrete strength, and loading type were observed to affect on the tendon stresses. However, the stress increments of unbonded tendon were minimal alt high values of span/depth in contrast with the ACI code.

The Effect of Mild Tensile Reinforcement and Effective Prestress on the Flexural Performance of the Prestressed Lightweight Concrete Beams with Unbonded Tendons (비부착 프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부착 철근과 유효 프리스트레스의 영향)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.617-626
    • /
    • 2011
  • Seven post-tensioned lightweight concrete (LWC) beam specimens were tested under a symmetrical two-point top loading system. The parameters investigated were the amounts of mild longitudinal reinforcement and effective prestressing. The design compressive strength and dry density of the LWC tested were 30 MPa and 1,770 $kg/m^3$, respectively. Similar to post-tensioned normal weight concrete (NWC) beams, the crack propagation and stress increase of the unbonded tendons were significantly affected by the amounts of mild longitudinal reinforcement and effective prestressing. With the increase in the amounts of mild longitudinal reinforcement and effective prestressing, the serviceability and flexural capacity of the beams were enhanced whereas the stress increase in the unbonded tendons decreased. To control the crack width in post-tensioned LWC beams, a minimum amount of mild longitudinal reinforcement specified in ACI 318-08 provision is required. The flexural behavior of post-tensioned LWC beams and stress increase of the unbonded tendons could be rationally predicted by the proposed non-linear two-dimensional analysis. On the other hand, ACI 318-08 flexure provision was too conservative about the post-tensioned LWC beams.

Effect of the Reinforcement Index on the Unbonded Tendon Stress of Post-tensioned Lightweight Concrete Beams (포스트텐션 경량콘크리트 보의 비부착 긴장재 응력에 대한 보강지수의 영향)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.89-90
    • /
    • 2010
  • Three post-tensioned lightweight concrete beams were tested to examine the effect of the reinforcement index on the unbonded tendon stress at ultimate strength of the beams. The reinforcement index selected for main variables were 0.06, 0.15, 0.30. Test results showed that the stress of the unbonded tendons in the ultimate strength of the post-tensioned lightweight concrete beams can be conservatively evaluated using the empirical equations specified in ACI 318-08.

  • PDF

An Analytical Study for Structural Behaviors of Unbonded Precast Rectangular Hollow Section Concrete Piers (비부착 프리캐스트 중공 사각 단면 교각의 구조거동에 관한 해석적 연구)

  • Choi, Seung-Won;Kim, Ick-Hyun;Cho, Jae-Yeo;Chang, Sung-Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.61-69
    • /
    • 2010
  • Unbonded precast concrete piers have better seismic performances than conventional reinforced concrete piers. In this research, seismic performances of unbonded precast prestressed concrete piers are analyzed using OpenSEES. Main parameters of analysis are concrete strength, jacking force ratio, ratio of tendon, and size of precast segment. In results, as the ratio of tendon and jacking force ratio increase, the flexural strength increases at softening state and ultimate state. Concrete strength and size of precast segment are negligible. But initial jacking force ratio leads to early yielding of prestressing tendon. Since compressive strain in core concrete is much less than ultimate strain, it can be expected that the amount of transverse steel reinforcement is to be reduced in comparison with conventional reinforced concrete column.