• Title/Summary/Keyword: 부착강성

Search Result 222, Processing Time 0.025 seconds

Properties of Advanced Synthetic Fiber Reinforced Concrete for Improvement of Tunnel Shotcrete Performance (터널 숏크리트 성능 향상을 위한 고기능성 합성섬유 보강 콘크리트의 물성 평가)

  • Jeon, Chanki;Jeon, Joongkyu
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • The Application of Steel Fiber Shotcrete in tunneling construction has become part of tunneling practice at least since the 1970s because of its high bending and tensile properties. Over the past 3 decades, researcher from all over the world have been significantly developing the associated technologies for improved performance of SFRS. But still it has some major drawbacks in terms of durability, damage of pumping hose, wastage due to rebound concrete, corrosion and it costs high. To overcome this situation researcher has to look for some alternative material. Therefore, this part study deals with the three types of fiber in order to find good alternative for steel fiber. Polyamide and Polypropylene fiber were used in this study with 0.6, 0.5% mixing ratio. To evaluate its fresh and harden properties air content, slump, compressive, split tensile and bending strength were measured. After comparing the results of all three types of fiber reinforced concrete with its different mixing proportion this study propose that polyamide fiber with addition ratio of 0.6 % for field use.

An Improved Bond Slip Model of CFT Columns for Nonlinear Finite Element Analysis (CFT 기둥의 비선형 유한요소해석을 위한 개선된 강관-콘크리트 간 부착 모델 개발)

  • Kwon, Yangsu;Kwak, Hyo-Gyoung;Hwang, Ju-Young;Kim, Jin-Kook;Kim, Jong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.213-220
    • /
    • 2015
  • CFT column has a lot of structural advantages due to the composite behavior between in-filled concrete and steel tube. This paper deals with the development of an effective numerical model which can consider the bond-slip behavior between both components of concrete matrix and steel tube without taking double nodes. Since the applied axial load to in-filled concrete matrix is delivered to steel tube by the confinement effect and the friction, the governing equation related to the slip behavior can be constructed on the basis of the force equilibrium and the compatability conditions. In advance, the force and displacement relations between adjacent two nodes make it possible to express the slip behavior with the concrete nodes only. This model results in significant savings in the numerical modeling of CFT columns to take into account the effect of bond-slip. Finally, correlation studies between numerical results and experimental data are conducted to verifying the efficiency of the introduced numerical model.

Structural Performance Evaluation of Reinforced Concrete Beams with Externally Bonded FRP Sheets (RC 구조물에 적용된 부착식 휨보강공법의 보강성능 평가)

  • Hong, Geon-Ho;Shin, Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.78-86
    • /
    • 2003
  • Reinforced concrete beams are often retrofitted with various FRP composite sheets. This paper is focused on the comparison of structural performance of various FRP sheets and proposal of the retrofitting design formula. Effects of the FRP kinds(AFRP, GFRP, CFRP) and the reinforcing steel ratio on behavior of the retrofitting beams are tested and analyzed with particular emphasis on the maximum load capacity, stiffness, and ductility. The experimental work included 4 point flexural testing of 3.2m span reinforced concrete beams with bonded external reinforcements. The results show that the difference of FRP kinds is not large and the flexural load capacity is mainly affected by stiffness of the retrofitting materials. This paper also proposes the design formula on the retrofitting reinforced concrete flexural members and checks with this experimantal work and previous research results.

Flexural Behavior of RC Beam After Completion of Electrochemical Chloride Extraction (전기화학적 염화물 추출 후 철근-콘크리트 보의 휨 거동)

  • Jung Wook Lee;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.484-492
    • /
    • 2023
  • The structural behaviour of concrete beam was examined by the three points bending test after the completion of the electrochemical chloride extraction (ECE), rather than bond strength mostly measured in previous studies. It was found that the flexural rigidity of concrete was lowered by the ECE, but the strength was enhanced in terms of the maximum load.The flexural rigidity, in the linear elastic range, was reduced by the loss of effective cross-section area. In fact, the inertia moment was substantially subjected to 70 % loss of the cross-section by the tensile strain at the condition of the failure. However, a lower rate of the inertia moment reduction was achieved by the ECE, implying the higher resistance to the cracking, but the higher risk of deformation.

An Experimental Study on the Shear Behavior of Reinforced Concrete Beams Strengthened with Slit Type Steel Plates (Slit형(形) 강판으로 보강(補强)한 철근콘크리트 보의 전단거동에 관한 실험연구)

  • Lee, Choon-Ho;Shim, Jong-Seok;Kwon, Ki-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • RC beam of existing structures often encounter shear problems for various reasons. The shear failure of RC beam is sudden and brittle. Strengthening technique jacketing with external bonding of steel plates(or CFRP and CFS) with epoxy is many use to in practice. This study presents test results on strengthening shear deficient RC beams by external bonding of slit type steel plates. Test parameters are width, interval, length, thickness and angle of slit in steel plates. The purpose was to evaluate the reinforcing effects, failure modes and shear capacities for RC beams of strengthened with various slit type steel plates. The test result confirmed that all slit steel plates improved the stiffness and strength of the specimens significantly. Failure modes of SV series and SD series showed shear fractures and flexure fractures at ultimate state respectively. SD series were ductile rather than SV series.

An Experimental Study on the Fatigue Behaviors Strengthened by Ventilation-Glass Fiber Plate of Reinforced Concrete Beams (철근콘크리트 보의 통기성 유리섬유판 보강에 따른 피로거동에 관한 실험적 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Chunsik
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2012
  • Recently, the construction industry commonly uses FRP as a reinforcement material because of its material advantages. FRP attached reinforcement has various advantages such as high strength, stiffness, excellent durability and construction practicability comparing to its weight. However, external attachment of FRP is water-tighted with low water permeable material, not draining water, probably causing damages on a permanent structure. The study manufactured it through pultrusion and examined GP(glass fiber panel) of which material-mechanical properties are almost same as the existing FRP but durability and attachment performance are better by stationary experiments, testing load-deflection curve, destruction types and load-deflection relation under repetitive loading test. As a result of 2,000,000 fatigue tests, it did not result in the destruction and showed excellent permanent attachment and durability as it displays significantly low compressive strain of concrete.

Analysis of the Load Carrying Behavior of Shear Connection at the Interface of Encased Composite Beams (매입형 합성보의 전단합성거동에 대한 비교분석)

  • Shin, Hyun Seop;Heo, Byung Wook;Bae, Kyu Woong;Kim, Keung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.67-79
    • /
    • 2008
  • In this study, a bending test with three encased composite beams were carried out and analyzed using FEM in order to find how chemical adhesion, interface interlock, friction and composite action by shear studs contribute to stiffness, strength and composite action in the interface of encased compo site beams. The test and results of the FEM analysis showed that the difference in the ultimate moment capacity of the composite beams with and without studs is under 10%. The reason is that the effect of chemical adhesion, interface interlock, and friction in the interface on the composite action is so high that the encased beams have a moment capacity above some defined magnitude. Also, the increment of moment capacity up to plastic moment is not large and the increase of linearly proportioned.

The elastic bucking strength of axially compressed tubular member with through-gusset connection (관통한 가셋트판이 부착된 압축 강관 부재의 탄성좌굴내력)

  • Kim, Woo-Bum;Lim, Ji-Youn
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.133-141
    • /
    • 2001
  • A tubular member holding an axially through-gusset connection is often used to transmit axial compression in a steel truss structures. The elastic buckling loads of the member is affected by the stiffness ratio($\beta$) and the length ratio(G) because of two elements with different properties. In current code, however, the strength is evaluated with an effective length factor k=0.9 without considering the above effect. Therefore this study analyzed a theoretical mechanism based on the elasticity theory and performed a finite element analysis to investigate the influence parameters on the elastic buckling strength of axially loaded member.

  • PDF

Seismic Response of Structures with Buckling-Restrained Braces (좌굴방지 가새가 설치된 건물의 지진응답)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.197-207
    • /
    • 2002
  • Energy dissipation capacity and earthquake responses of steel structures installed with unbonded braces(UB) were investigated. Parametric studies were performed for a single-degree-of-freedom structure under harmonic loads, and optimum yield strength of unbonded braces were derived. Nonlinear dynamic time history analyses were carried out to investigate the seismic response of multi-story model structures with UB having various size and strength. Various techniques were applied to determine proper story-wise distribution of UB in multi-story structures. The analysis results show that the maximum displacements of structures generally decrease as the stiffness of UB increases. However for some natural frequencies and seismic loads the maximum displacement and accumulated damage increases as the stiffness of UB increases.

Determination of blood lead concentration by the atomic absorption spectrometry with graphite furnace-Comparison of blood lead concentration between occupationally exposed workers and control group (흑연로 장치가 부착된 원자흡광분석기를 이용한 혈중 납 농도 측정-직업적으로 납에 폭로된 근로자들과 비폭로 대조군간의 혈중 납 농도 비교)

  • Yang, Jeong Sun;Kang, Seong Kyu;Choi, Byung Sun;Park, In Jeong;Park, Dong Wook;Oh, Se Min;Jeong, Ho Keun
    • Analytical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.363-368
    • /
    • 1993
  • Blood lead concentrations of occupationally exposed workers were measured by the atomic absorption spectrometry with graphite furnace. The concentrations of the unexposed group were also checked and compaired with those of the exposed one. The correlation of smoking habit and work duration with the blood lead concentration was also surveyed.

  • PDF