DOI QR코드

DOI QR Code

Flexural Behavior of RC Beam After Completion of Electrochemical Chloride Extraction

전기화학적 염화물 추출 후 철근-콘크리트 보의 휨 거동

  • Jung Wook Lee (Department of Civil & Environment System Engineering, Hanyang University) ;
  • Ki Yong Ann (Department of Civil & Environment Engineering, Hanyang University)
  • 이정욱 (한양대학교 건설환경시스템공학과) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Received : 2023.11.08
  • Accepted : 2023.11.17
  • Published : 2023.12.30

Abstract

The structural behaviour of concrete beam was examined by the three points bending test after the completion of the electrochemical chloride extraction (ECE), rather than bond strength mostly measured in previous studies. It was found that the flexural rigidity of concrete was lowered by the ECE, but the strength was enhanced in terms of the maximum load.The flexural rigidity, in the linear elastic range, was reduced by the loss of effective cross-section area. In fact, the inertia moment was substantially subjected to 70 % loss of the cross-section by the tensile strain at the condition of the failure. However, a lower rate of the inertia moment reduction was achieved by the ECE, implying the higher resistance to the cracking, but the higher risk of deformation.

본 연구에서는 전기화학적 염화물 추출(ECE) 완료된 RC 보의 구조적 거동을 기존에 주로 사용되었던 부착 강도 측정이 아닌 3점 재하 시험을 통해 분석했다. 그 결과, ECE 처리에 의해 콘크리트 보의 휨 강성은 저하되었으나, 최대하중 측면에서 강도는 향상되는 것으로 나타났다. 또한, ECE에 의해 인장 변형률이 증가하여 인장 균열에 대한 저항성은 향상되었으며, 관성 모멘트 감소율은 감소하였다. 이러한 구조적 거동 측면의 이점에도 불구하고 연성 및 휨 강성은 저하되었다. 콘크리트보의 휨 강성은 선형 탄성 범위에서 유효 단면적의 손실로 인해 감소됐고, 실제로 인장변형에 의해 파손된 상태에서 단면 2차 모멘트는 약 70 %의 손실되었다. 그러나 이러한 단면 손실에 의한 관성 모멘트 감소율은 ECE에 의해 더 낮아졌는데, 이는 균열에 대한 저항성이 증가되는 반면, 변형량이 증가되어 사용성 측면에서의 위험성은 더 증가됨을 의미한다.

Keywords

Acknowledgement

이 논문은 2021년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 연구비 지원에 의해 수행되었습니다(No. NRF-2020 R1A2C3012248). 이에 감사드립니다.

References

  1. ACI 318-19. (2019). Building Code Requirement for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  2. ACI 365.1R-17. (2017). Report on Service Life Prediction, American Concrete Institute, Farmington Hills, MI, USA.
  3. Andisheh, K., Scott, A., Palermo, A. (2018). Experimental evaluation of the residual compression strength and ultimate strain of chloride corrosion-induced damaged concrete, Structural Concrete, 20(1), 296-306. https://doi.org/10.1002/suco.201800108
  4. Azad, A.K., Ahmad, S., Azher, S.A. (2007). Residual strength of corrosion-damaged reinforced concrete beams, ACI Materials Journal, 104(1), 40-47. https://doi.org/10.14359/18493
  5. Dong, J., Zhao, Y., Wang, K., Jin, W. (2017). Crack propagation and flexural behaviour of RC beams under simultaneous sustained loading and steel corrosion, Construction and Building Materials, 151, 208-219. https://doi.org/10.1016/j.conbuildmat.2017.05.193
  6. Elgebaley, R., Elshazly, Y., Elsalamawy, M. (2019). Role of cement type on performance change of reinforcing steel due to chloride extraction, Construction and Building Materials, 208, 444-453. https://doi.org/10.1016/j.conbuildmat.2019.03.022
  7. Hanjari, K.Z., Kettil, P., Lundgren, K. (2011). Analysis of mechanical behavior of corroded reinforced concrete structures, ACI Structural Journal, 108(5), 532-541. https://doi.org/10.14359/51683210
  8. Hwang, W., Ann, K.Y. (2023). Determination of rust formation to cracking at the steel-concrete interface in concrete, Construction and Building Materials, 367, 130215.
  9. Ihekwaba, N.M., Hope, B.B., Hansson, C.M. (1995). Pull-out and bond degradation of steel rebars in ECE concrete, Cement and Concrete Research, 26(2), 267-282. https://doi.org/10.1016/0008-8846(95)00210-3
  10. Kallias, A.N., Rafiq, M.I. (2010). Finite element investigation of the structural response of corroded RC beams, Engineering Structures, 32(9), 2984-2994. https://doi.org/10.1016/j.engstruct.2010.05.017
  11. Kordtabar, B., Dehestani, M. (2021). Effect of corrosion in reinforced concrete frame components on pushover behavior and ductility of frame, Structural Concrete, 22(5), 2665-2687. https://doi.org/10.1002/suco.202000309
  12. Li, Y., Liu, X., Wu, M., Bai, W. (2017). Research of electrochemical chloride extraction and reinforcement of concrete column using MPC-bonded carbon fiber reinforced plastic sheet & mesh, Construction and Building Materials, 153, 436-444. https://doi.org/10.1016/j.conbuildmat.2017.07.131
  13. Lim, S., Akiyama, M., Frangopol, D.M. (2016). Assessment of the structural performance of corrosion-affected RC members based on experimental study and probabilistic modeling, Engineering Structures, 127, 189-205. https://doi.org/10.1016/j.engstruct.2016.08.040
  14. Lin, H., Li, Y., Li, Y. (2019). A study on the deterioration of interfacial bonding properties of chloride-contaminated reinforced concrete after electrochemical chloride extraction treatment, Construction and Building Materials, 197, 228-240. https://doi.org/10.1016/j.conbuildmat.2018.11.196
  15. Liu, Y., Weyers, R.E. (1998). Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures, ACI Materials Journal, 95(6), 675-681. https://doi.org/10.14359/410
  16. Reou, J.S., Ann, K.Y. (2010). The distribution of hydration products at the steel-concrete interface for concretes subjected to electrochemical treatment, Corrosion Science, 52(6), 2197-2205. https://doi.org/10.1016/j.corsci.2010.02.037
  17. Torres-Acosta, A.A., Navarro-Gutierreza, S., Teran- Guillen, J. (2007). Residual flexure capacity of corroded reinforced concrete beams, Engineering Structures, 29(6), 1145-1152. https://doi.org/10.1016/j.engstruct.2006.07.018
  18. Vrable, J.B. (1977). Cathodic protection for reinforcing steel in concrete, Chloride Corrosion of Steel in Concrete, ASTM STP 629-EB, American Society for Testing and Materials, Philadelphia, 124-149.
  19. Vu, K., Stewart, M.G., Mullard, J. (2005). Corrosion-induced cracking: experimental data and predictive models, ACI Structural Journal, 102(5), 719-726. https://doi.org/10.14359/14667
  20. Yalciner, H., Kumbasaroglu, A. (2020). Experimental evaluation and modeling of corroded reinforced concrete columns, ACI Structural Journal, 117, 61-76. https://doi.org/10.14359/51720195
  21. Yalciner, H., Kumbasaroglu, A., El-Sayed, A.K., Pekrioglu Balkis, A., Dogru, E., Turan, A.I., Karimi, A., Kohistani, R., Mermit, M.F., Bicer, K. (2020). Flexural strength of corroded reinforced concrete beams, ACI Structural Journal, 117(1), 29-41. https://doi.org/10.14359/51720195
  22. Zhang, Q., Gong, J. (2013). Study on seismic behavior of reinforced concrete columns after ECE treatment, Construction and Building Materials, 50, 549-559. https://doi.org/10.1016/j.conbuildmat.2013.10.001