• Title/Summary/Keyword: 부지특성조사

Search Result 190, Processing Time 0.024 seconds

Review of Site Characterization Methodology for Deep Geological Disposal of Radioactive Waste (방사성폐기물의 심층 처분을 위한 부지특성조사 방법론 해외 사례 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Jo, Yeonguk;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.239-256
    • /
    • 2017
  • In the process of site selection for a radioactive waste disposal, site characterization must be carried out to obtain input parameters to assess the safety and feasibility of deep geological repository. In this paper, methodologies of site characterization for radioactive waste disposal in Korea were suggested based on foreign cases of site characterization. The IAEA recommends that site characterization for radioactive waste disposal should be performed through stepwise processes, in which the site characterization period is divided into preliminary and detailed stages, in sequence. This methodology was followed by several foreign countries for their geological disposal programs. General properties related to geological environments were obtained at the preliminary site characterization stage; more detailed site characteristics were investigated during the detailed site characterization stage. The results of investigation of geology, hydro-geology, geochemistry, rock mechanics, solute transport and thermal properties at a site have to be combined and constructed in the form of a site descriptive model. Based on this site descriptive model, the site characteristics can be evaluated to assess suitability of site for radioactive waste disposal. According to foreign site characterization cases, 7 or 8 years are expected to be needed for site characterization; however, the time required may increase if the no proper national strategy is provided.

Evaluation of Site Specific Ground Response (부지 고유의 지반 거동평가)

  • 김동수;이진선;윤종구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 1999
  • Free-field ground motion during earthquake is significantly affected by the local site conditions and it is essential for the seismic design to perform the site specific ground response analysis. In this paper, the procedures of site specific ground response analysis were suggested based on the Korean seismic guideline and the review of state of the art technologies. The concept of ground response analysis was introduced, and the techniques of obtaining soil data for one dimensional equivalent linear analysis which include site investigation planning, field and laboratory testing techniques, deformational characteristics of soils at small to large strains, and site characterization techniques combining field and laboratory test results, were suggested. Finally, the case study was performed at Inchon area following the suggested procedure.

  • PDF

A Radionuclides Suite Selection for Site Characterization and Final Status Survey in the U.S. NPPs (미국의 원전 해체관련 부지특성 및 최종상태 조사를 위한 방사성 오염 핵종 결정 방법에 대한 분석)

  • Zhao, Pengfei;Jeon, Yeo Ryeong;Kim, Yongmin;Lee, Jong Seh;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.267-277
    • /
    • 2016
  • For the decommissioning of a nuclear power plant, a site characterization and final status survey require a site-specific suite of radionuclides that could potentially still be present in the site during or after the decontamination processes. The United States Nuclear Regulatory Commission (U.S. NRC) requires a Decommissioning Technical Base Document (DTBD) along with a Site Characterization and Historical Site Assessment (HSA) from the utility for decommissioning to proceed. Both the DTBD and HSA are preliminary components of the Radiological Site Survey investigation process and should be included in the final License Termination Plan (LTP) for site release and reuse consideration from the U.S. NRC and the utility company. This study reviews the United States Nuclear Power Plants (U.S. NPPs) decommissioning cases and is especially focused on the methodologies used for determining a site-specific suite of radionuclides before and during the site characterization and final status surveys. In 2017, Kori-1 will be ready for decommissioning and related preparations are ongoing, this review will help Korea to prepare regulatory guidelines and give technical background for the safe and successful decommissioning of NPPs.

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Case Studies of Site Investigation Factors and Methods for Site Selection for High-Level Radioactive Waste Disposal (고준위방사성폐기물 처분 부지선정을 위한 조사인자 및 조사기법에 대한 국외사례 분석)

  • Hyo Geon Kim;Si Won Yoo;Dae Seok Bae;Soo Hwan Jung;Ki Su Kim;Jun Kyum Kim;Man Ho Han;Junghae Choi
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.611-626
    • /
    • 2023
  • Overseas examples of the characterization stage of site selection proposed by the International Atomic Energy Agency were reviewed to highlight the factors necessary for consideration in the deep disposal of high-level radioactive waste. Studies in Sweden, Finland, the USA, and Canada were considered. Site investigations in Sweden and Finland commonly covered the fields of geology, hydrogeology, and hydrogeochemistry using similar field investigation techniques. The USA considered survey groups and factors under pre- and post-lockdown guidelines, as well as those for desaturated and saturated surveys. involving geophysical, hydrological, hydrogeological, hydrogeochemical, mechanical/physical, and thermal-characterization investigations. Canada provided a list of investigative methods for both preliminary and detailed site assessments including geological, physical, boring, hydrological, laboratory testing, and chemical analysis studies. Results of this study should elucidate site-selection investigation factors and survey methods applicable to Korea.

공장부지 토양.지하수 오염 조사기법 및 정화기술의 적용

  • 황종식;박연정;손명기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.19-26
    • /
    • 1998
  • 토양과 지하수 오염은 오염원이나 그 정화 방법에 있어서 서로 밀접한 관계를 가지고 있으며, 수질오염이나 대기오염과 달리 일단 한번 오염이 되면 오염 정화과정이 매우 복잡하고 어려우면서도 비용이 많이 드는 특성을 갖고 있기 때문에 오염원의 형태에 따른 통합된 관리 및 효율적 정화기술의 적용이 무엇보다 필요하다. 따라서 표준화된 오염조사 절차 (Environmental Site Assessment)를 통해 대상부지를 조사한 후, 확인된 오염원의 정화를 위한 기술을 선정함에 있어 필요한, 오염원·대상부지 특성 및 사업환경에 따른 정화기술에 대해 설명하고, 토양 및 지하수 통합 정화기술의 적용 예를 들어 토양과 지하수를 통합·관리함이 필요함을 살펴보고자 한다.

  • PDF

Application of MARSSIM for Final Status Survey of the Decommissioning Project (해체사업의 최종현황조사를 위한 MARSSIM 적용)

  • Hong, Sang-Bum;Lee, Ki-Won;Park, Jin-Ho;Chung, Un-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.107-111
    • /
    • 2011
  • The release of a site and building from regulatory control is the final stage of the decommissioning process. The MARSSIM (Multi-Agency Radiation Survey and Site Investigation Manual) provides overall framework for conducting data collection for a final status survey to demonstrate compliance with site closure requirements. The KAERI carried out establishing a final status survey by using the guidance provided in the MARSSIM for of a site and building of the Korea Research Reactor. The release criteria for a site and building were set up based on these results of the site specific release levels which were calculated by using RESRAD and RESRAD-Build codes. The survey design for a site and building was classified by using the survey dataset and potential contamination. The number of samples in each survey unit was calculated by through a statistical test using the collected data from a scoping and characterization survey. The results of the final status survey were satisfied the release criteria based on an evaluation of the measured data.

Site Monitoring and investigation plan for LILW disposal (방사성폐기물 처분장 부지감시 계획)

  • Baek, Seung-Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.369-385
    • /
    • 2008
  • The purpose of site monitoring and investigation is to offer the basic data for performance assessment and design of low- and intermediate-level radioactive waste(LILW) disposal facility by monitoring variations of main site properties continually in the stage of pre-operation, operation and post-closure. Main contents of site monitoring are as follows. In the stage of pre-operation, suitability evaluation for disposal facility and monitoring for constructing and operating disposal facility are performed. In the operation period, monitoring is performed including surroundings to research the influence to environment with operating disposal facility and operate safely and efficiently. In the post-closure period, monitoring about major site properties is performed to prevent the effect of radioactive waste from disposal facility and to secure long-term safety.

  • PDF

Rock Mechanics Site Characterization for HLW Disposal Facilities (고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화)

  • Um, Jeong-Gi;Hyun, Seung Gyu
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.