• Title/Summary/Keyword: 부족팽창제트

Search Result 28, Processing Time 0.02 seconds

An Analytical Study on Supersonic Under-Expanded Jet (초음속 부족팽창 제트유동에 관한 해석적 연구)

  • 김희동;이호준;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • Based upon the results of numerical calculation, empirical scaling equations were made for supersonic under-expanded jets in both axisymmetric and two dimensional flows. The objective of the present study is to find a straightforward method that can predict the under-expanded supersonic jets issuing from various kinds of nozzles. The present empirical equations were agreed with the calculation results of total variation diminishing difference scheme. The supersonic under-expanded jets operating at a given pressure ratio could be well predicted by the present scaling equations.

  • PDF

A Fundamental Study of Coaxial Supersonic Jets (동축 초음속 제트유동에 관한 기초적 연구)

  • 이권희;구병수;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.37-37
    • /
    • 2000
  • 일반적으로 노즐 입구의 압력과 배압의 비가 어떤 임계값보다 큰 경우에 축소확대 노즐을 통하는 유동은 노즐목에서 초크하며, 노즐출구에서는 용이하게 초음속으로 된다. 노즐을 통하여 초음속으로 방출되는 제트유동에 관해서는 현재까지 많은 연구가 수행되었다. 이들 연구에 의하면 노즐 압력 비에 따라 노즐출구에서의 유동상태(즉 과팽창, 적정팽창, 부족팽창상태)가 결정되며, 노즐출구로부터 하류의 초음속 제트유동에서 발생하는 충격파 구조 및 위치, 제트경계의 구조 그리고 제트의 코어 등 유동의 기구가 비교적 상세하게 알려져 있다.(중략)

  • PDF

An Experimental Study on the Supersonic Free Jet Discharged from a Petal Nozzle (Petal 노즐로부터 방출되는 초음속 자유제트에 관한 실험적 연구)

  • 이준희;권용훈;정미선;이장창;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.55-56
    • /
    • 2002
  • 노즐로부터 방출되는 초음속 제트유동의 특성은 노즐의 공급압력과 배압의 비에 따라 결정된다 노즐 배압에 상대적인 노즐 출구면에서 발생하는 압력의 크기에 따라 제트 유동은 과팽창, 적정팽창, 그리고 부족팽창의 형태로 된다. 종래 주로 단면이 원형인 초음속 노즐로부터 방출되는 자유제트에 관하여 많은 연구가 수행되어, 제트 유동의 특성이 비교적 잘 알려져 있다. 이들 연구 결과에 의하면, 제트 내부에서 발생하는 충격파 시스템은 노즐 출구면에서 유동의 팽창상태에 의존하게 되며, 제트 유동은 주위의 기체를 흔입(entrainment)하여, 유동의 하류방향으로 제트 폭이 확대되며, 유속은 감소하게 된다.

  • PDF

Study on Supersonic Jet Noise Reduction Using a Mesh Screen (메쉬 스크린을 이용한 초음속 제트소음 저감법에 관한 실험적 연구)

  • Kweon, Yong-Hun;Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.377-381
    • /
    • 2006
  • This paper describes experimental work to control supersonic jet noise using a mesh screen that is placed at the nozzle exit plane. The mesh screen is a wire-gauze screen that is made of long stainless wires with a very small diameter. The nozzle pressure ratio is varied to obtain the supersonic jets which are operated in a wide range of over-expanded to moderately under-expanded jets. In order to perturb mainly the initial jet shear layer, the hole is perforated in the central part of the mesh screen. The hole size is varied to investigate the noise control effectiveness of the mesh screen. A schlieren optical system is used to visualize the flow fields of supersonic jet with and without the mesh screen device. Acoustic measurement is performed to obtain the OASPL and noise spectra. The results obtained show that the present mesh screen device leads to a substantial suppression of jet screech tones. The hole size is an important factor in reducing the supersonic jet noise. For over-expanded jets, the noise control effectiveness of the mesh screen appears more significant, compared to correctly and under-expanded jets

  • PDF

PIV Measurement and Color Schlieren Observation of Supersonic Jets (PIV 및 컬러 쉴리렌 기법을 이용한 초음속 제트 관측)

  • Lee, Jae Hyeok;Zhang, Guang;Kim, Tae Ho;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.604-605
    • /
    • 2017
  • The present work aims at visualization of the supersonic air jet flows discharged from C-D nozzles. In the present experiments, Prticle Image Velocimetry (PIV) was employed to specify the jet flow field quantitatively, and a color Schlieren optical method was applied to observe the same jets qualitatively. The $0.5{\mu}s$ duration of spark light source was used for Schlieren and it can be controled as $0.5{\mu}s$, $1{\mu}s$, $2{\mu}s$ and focusing mode. The convergent-divergent nozzles were used to generate the jet flow with the design Mach number of 2.0, 2.2. Nozzle pressure ratios (NPRs) were varied from 5 to 8. A good comparison of the jet size and shock location from the Schlieren images with the PIV quantitative values is obtained. The obtained images clearly showed the major features of the under-expanded jet, over-expanded jet, sound wave, turbulent eddies and so on.

  • PDF

A Computational Analysis of the Under-Expanded Moist Air Jet (부족팽창 습공기제트에 관한 수치해석적 연구)

  • Baek Seung-Cheol;Song Chul-Hwa;Toshiaki Setoguchi;Kim Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.197-204
    • /
    • 2005
  • The under-expanded jet discharged from a nozzle or an orifice has been extensively employed in industrial applications and aerospace technologies. A number of studies have been made to investigate the under-expanded jet structures such as Mach disk, barrel shock wave, jet boundary configuration, etc. In the current study, a computational work is performed to investigate the effect of non-equilibrium condensation of moist air on the under-expanded jet, which is discharged from a sonic nozzle. The results obtained are compared with an available experimental data. It is found that non-equilibrium condensation of moist air alleviates the oscillations of the under-expanded jet, and can increase Mach disk diameter, without changing the location.

A Fundamental Study of the Supersonic Microjet (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • Jeong, M.S.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF

Experimental Study on the Supersonic Jets at Low Operating Pressure Ratio (낮은 작동 압력비의 초음속 제트에 대한 실험적 연구)

  • Lee, Jae Hyeok;Zhang, Guang;Kim, Tae Ho;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.489-495
    • /
    • 2017
  • An experimental study on supersonic jets produced by supersonic nozzles at low operating pressure ratio is conducted. In the present experiments, particle image velocimetry (PIV) was employed to quantitatively specify the jet flowfield, and a color Schlieren optical method was applied to observe the same jets qualitatively. Convergent-divergent nozzles were used to generate the jet flow with design Mach numbers of 1.5 and 1.8. Nozzle pressure ratios (NPRs) were varied from 4 to 7. A good comparison of the jet size from the Schlieren images with the theoretical values is obtained. The obtained images clearly showed the major features of the under-expanded jet and over-expanded jet.

A Fundamental Study of the Supersonic Microjet Flow (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • 정미선;김현섭;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.63-70
    • /
    • 2002
  • Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed between 0.2 and 1.25 to obtain both the under- and over-expanded flows at the exit of the micronozzle. and Reynolds number Re is changed between 600 to 40000. For both laminar and turbulent microjet flows, sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

An Analytical Study on Supersonic Under-Expanded Jet (초음속 부족팽창 제트유동에 관한 해석적 연구)

  • 김희동;이호준;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.75-84
    • /
    • 1997
  • Based upon the results of numerical calculation. empirical scaling equations were made for supersonic under-expanded jets in both axisymmetric and two dimensional flows. The objective of the present study is to obtain a straightforward method that can predict the under-expanded supersonic jets issuing from various kinds of nozzles. The present empirical equations were agreed with the calculation results of total variation diminishing difference scheme. The supersonic under-expanded jets operating with a given pressure ratio could be well predicted by the present scaling equations.

  • PDF