A study is presented that examines the effect of personality on preference and purchase intention of positive and negative novelty design products. Participants evaluated their preference and purchase intention on 18 design products including positive and negative novelty design products. A cute Scream character was created as a positive novelty design and a skeleton Mickey character was used as a negative one. We measured extroversion, neuroticism, and visual product aesthetics as individual traits. The results shows that people, of course, prefer(and want to buy) the positive novelty design product to the negative novelty design product. Only in the case of the negative novelty design product, the more neurotic people is, the more they prefer it. Also, among the people who like the negative novelty design product, introvert ones are likely to purchase it but extroverted ones are not. These findings imply that personality plays an important role in liking and purchasing negative novelty design product.
Social media data serves as a proxy indicator to understand the problems and the future of public opinion in Korean society. This research used 109,015 news data from 2016 to 2018 to analyze the sensitivity of the elderly and employment in Korean society, and explored the possibility of expanding the labor force in Korean society, which is facing a cliff between the elderly and the population. Topic keywords for employment of the elderly include "elderly*employment", "elderly*employment", and "elderly*wage". As a result of the analysis, positive sensitivity prevails for most of the period, and it is possible to expand the working-age population. Positive feelings about expanding employment opportunities for the elderly and negative feelings about low wages have brought to light the reality of the elderly who are still poor despite their work. In this study, social big data was used to analyze the perceptions and sensibilities of Korean society related to the elderly and employment through hierarchical crowd analysis and related text mining analysis.
The purpose of this study was to explore the differences in sentiment on social networking sites among six languages (English, German, Russian, Spanish, Turkish and Dutch). A total of 204 million tweets were collected using Streaming API. Subjective/objective ratio, sentiment strength, positive/negative ratio, number of retweets and boundary impermeability were analyzed with SentiStrength to estimate the trends of emotional expression via Twitter. The results showed that subjective/objective ratio and the positive/negative ratio of tweets were significantly different by languages (p<0.001). And, there were significant effects of language on sentiment strength, boundary impermeability and the number of retweets (p<0.001). The results also indicate that the cross-cultural, language differences should be taken into account in sentiment analysis on SNS.
Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.15-18
/
2015
SNS의 확산으로 대중들은 제품, 서비스, 사회적 이슈 등 다양한 도메인에 대하여 자신의 기분이나 의견을 적극적으로 표현하고 있다. 이에 따라 SNS를 분석하여 제품의 수요, TV 시청률, 주가 등의 다양한 현상을 예측하는 데 있어 감성분석을 활용하는 연구가 활발히 진행되고 있다. 감성분석은 각 어휘에 대한 품사, 극성, 감성지수를 규정하고 있는 감성사전을 기반으로 이루어진다. 하지만 동일한 단어라도 도메인에 따라 중요도가 달라지기 때문에 도메인의 특성을 고려한 감성사전을 사용해야 할 필요성이 있다. 따라서 본 연구에서는 다양한 도메인에 대하여 각각의 특성에 맞게 더욱 정확한 감성분석을 할 수 있도록 도메인 맞춤형 감성사전을 구축하는 기법을 제안한다. 도메인 별로 긍 / 부정 평가에 있어 중요한 척도가 되는 단어들을 도메인 감성어휘로 선별하여 목록을 구축하고, 각 감성어휘의 중요도에 따라 도메인 감성지수를 새롭게 정의하였다. 실험 결과, 평가 도메인에 적합한 감성사전이 다른 도메인의 감성사전 및 범용 감성사전보다 우수한 성능을 보였다. 이를 통해 도메인 맞춤형 감성사전 구축기법의 효용성을 확인하였다.
Around the end of 2017, the investment fever for cryptocurrencies-especially Bitcoin-has started all over the world. Especially, South Korea has been at the center of this phenomenon. Sinceit was difficult to find the profitable investment opportunities, people have started to see the cryptocurrency markets as an alternative investment objects. However, the cryptocurrency fever inSouth Korea is mostly based on psychological phenomenon due to expectation of short-term profits and social atmosphere rather than intrinsic value of the assets. Therefore, this study aimed to analyze influence of people's social sentiment on price movement of cryptocurrency. The data was collected for 181 days from Nov 1st, 2017 to Apr 30th, 2018, especially focusing on Bitcoin-related post in Twitter along with price of Bitcoin in Bithumb/UPbit. After the collected data was refined into neutral, positive and negative words through sentiment analysis, the refined neutral, positive, and negative words were put into regression model in order to find out the impacts of social sentiments on Bitcoin price. After examining the relationship by the regression analyses and Granger Causality tests, we found that the positive sentiments had a positive relationship with Bitcoin price, while the negative words had a negative relation with it. Also, the causality test results show that there exist two-way causalities between social sentiment and Bitcoin price movement. Therefore, we were able to conclude that the Bitcoin investors'behaviors are affected by the changes of social sentiments.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.5
/
pp.563-569
/
2012
The studies of opinion mining or sentiment analysis have been the focus with social web proliferation. Sentiment analysis requires sentiment resources to decide its polarity. In the existing sentiment analysis, they have been built resources designed with intensity of sentiment polarity and decided polarity of opinion using the ones. In this paper, I will present sentiment categories for not only polarity of opinion but also the basis of positive/negative opinion. I will define psychological emotions to primary sentiments for the reasonable classification. And I will extract the informations of sentiment from social web texts for the actual distribution of sentiments in social web. Re-classifying primary sentiments based on extracted sentiment information, I will organize sentiment categories for the social web. In this paper, I will present 23 categories of sentiment by using proposed method.
KIPS Transactions on Software and Data Engineering
/
v.5
no.8
/
pp.377-384
/
2016
Our goal is to build the system which collects tweets from Twitter, analyzes the sentiment of each tweet, and helps users build a sentiment tagged corpus semi-automatically. After collecting tweets with the Twitter API, we analyzes the sentiments of them with a sentiment dictionary. With the proposed system, users can verify the results of the system and can insert new sentimental words or dependency relations where sentiment information exist. Sentiment information is tagged with the JSON structure which is useful for building or accessing the corpus. With a test set, the system shows about 76% on the accuracy in analysing the sentiments of sentences as positive, neutral, or negative.
Journal of the Korean Data and Information Science Society
/
v.26
no.5
/
pp.1167-1173
/
2015
The development of information and communication technology like SNS, blogs, and bulletin boards, was provided a variety of places where you can express your thoughts and comments and allowing Big Data to grow, many people reveal the opinion of the social issues in SNS such as Twitter. In this study, we would like to pre-built sentimental dictionary about social issues and conduct a sentimental analysis with structured dictionary, to gather opinions on social issues that are created on twitter. The data that I used is "bikini", "nakkomsu" including tweet. As the result of analysis, precision is 61% and F1- score is 74%. This study expect to suggest the standard of dictionary construction allowing you to classify positive/negative opinion on specific social issues.
The Journal of the Convergence on Culture Technology
/
v.6
no.1
/
pp.111-120
/
2020
As an application of big data and artificial intelligence techniques, this study proposes an atypical language-based sentimental opinion poll methodology, unlike conventional opinion poll methodology. An alternative method for the sentimental classification model based on existing statistical analysis was to collect real-time Twitter data related to parliamentary elections and perform empirical analyses on the Polarity and Intensity of public opinion using attribute-based sensitivity analysis. In order to classify the polarity of words used on individual SNS, the polarity of the new Twitter data was estimated using the learned Lasso and Ridge regression models while extracting independent variables that greatly affect the polarity variables. A social network analysis of the relationships of people with friends on SNS suggested a way to identify peer group sensitivity. Based on what voters expressed on social media, political opinion sensitivity analysis was used to predict party approval rating and measure the accuracy of the predictive model polarity analysis, confirming the applicability of the sensitivity analysis methodology in the political field.
Park, Chun-Young;Park, Yo-Han;Jeong, Hye-Ji;Kim, Ji-Won;Choi, Yong-Seok;Lee, Kong-Joo
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.233-237
/
2017
본 논문은 신문기사의 감성 댓글을 생성하기 위한 시스템을 제시한다. 감성을 고려한 댓글 생성을 위해 기존의 Sequence-to-Sequence 모델을 사용하여 긍정, 부정, 비속어 포함, 비속어 미포함 유형의 4개의 감성 모델을 구축한다. 하나의 신문 기사에는 다양한 댓글이 달려있지만 감성 사전과 비속어 사전을 활용하여 하나의 댓글만 선별하여 사용한다. 분류한 댓글을 통해 4개의 모델을 학습하고 감성 유형에 맞는 댓글을 생성한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.