• Title/Summary/Keyword: 부이자료

Search Result 107, Processing Time 0.034 seconds

Improvement of KOMPSAT-5 Sea Surface Wind with Correction Equation Retrieval and Application of Backscattering Coefficient (KOMPSAT-5 후방산란계수의 보정식 산출 및 적용을 통한 해상풍 산출 결과 개선)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1373-1389
    • /
    • 2019
  • KOMPSAT-5 is the first satellite in Korea equipped with X-band Synthetic Aperture Radar (SAR) instrument and has been operated since August 2013. KOMPSAT-5 is used to monitor the global environment according to its observation purpose and the availability of KOMPSAT-5 is also highlighted as the need of high resolution wind data for investigating the coastal region. However, the previous study for the validation of wind derived from KOMPSAT-5 showed that the accuracy is lower than that of other SAR satellites. Therefore, in this study, we developed the correction equation of normalized radar cross section (NRCS or backscattering coefficient) for improvement of wind from the KOMPSAT-5 and validated the effect of the equation using the in-situ measurement of ocean buoys. Theoretical estimated NRCS and observed NRCS from KOMPSAT-5 showed linear relationship with incidence angle. Before applying the correction equation, the accuracy of the estimated wind speed showed the relatively high root-mean-square errors (RMSE) of 2.89 m s-1 and bias of -0.55 m s-1. Such high errors were significantly reduced to the RMSE of 1.60 m s-1 and bias of -0.38 m s-1 after applying the correction equation. The improvement effect of the correction equation showed dependency relying on the range of incidence angle.

Analysis of Reliability of Weather Fields for Typhoon Sanba (1216) (태풍 기상장의 신뢰도 분석: 태풍 산바(1216))

  • Kwon, Kab Keun;Jho, Myeong Hwan;Ryu, Kyong Ho;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.465-480
    • /
    • 2020
  • Numerical simulations of the storm surge and the wave induced by the Typhoon Sanba incident on the south coast of Korea in 2012 are conducted using the JMA-MSM forecast weather field, NCEP-CFSR reanalysis weather field, ECMWF-ERA5 reanalysis weather field, and the pressure and wind fields obtained using the best track information provided by JTWC. The calculated surge heights are compared with the time history observed at harbors along the coasts of Korea. For the waves the calculated significant wave heights are compared with the data measured using the wave buoys and the underwater pressure type wave gauge. As a result the JMA-MSM and the NCEP-CFSR weather fields give the highest reliability. The ECMWF-ERA5 gives in general surge and wave heights weaker than the measured. The ECMWF-ERA5, however, reproduces the best convergence belt formed in front of the typhoon. The weather field obtained using JTWC best track information gives the worst agreement.

A Study on the Dynamic Response Analysis of the Fishery Barge Type Offshore Structure for Fitting Radar Reflector (레이더 리프렉터 장착을 위한 어업용 바지선의 동적 응답해석에 관한 연구)

  • Park Sung-Hyeon;Jeong Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.383-388
    • /
    • 2005
  • To install a radar reflector on small ships, such as a small fishing vessel, a fishery buoy, and a barge ship for fishery, it is very important to develop the optimal system which may determine a proper installation location. For this, the response characteristics how waves have an effect on the small ships should be accurately analyzed. In this paper, we analyze the dynamic behaviors of small ships, which may be caused by irregular waves. To do this, we investigate how a barge ship responses to wavelength, water depth, and directions of incoming waves. The analyzed results shall be utilized to evaluate an effect on a radar cross section when we install an radar reflector on a barge ship for fishery and a small ship.

Experimental Study for the Resonance Effect of the Power Buoy Amplitude (공진형 전력부이의 상하변위증폭 효과에 관한 실험적 연구)

  • Kweon, Hyuck-Min;Koh, Hyeok-Jun;Kim, Jung-Rok;Choi, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.585-594
    • /
    • 2013
  • In this study, laboratory experiments and numerical simulations were conducted to test the performance of resonance power buoy system proposed by Kweon et al.(2010). The system is composed of a linear generator and a mooring buoy. The mover of the linear generator mainly has heave motion driven by vertical oscillation of the buoy. In this system, the velocity discrepancy between the mover and the buoy makes electricity. However, ocean wave energy as a natural resource around Korean peninsula is comparatively small and the driving force for producing electricity is not enough for commercialization. Therefore, it is necessary that the buoy motion be amplified by using resonance characteristics. In order to verify the resonance effects on the test power buoy, the experimental investigations were conducted in the large wave flume (length of 110 m, width of 8 m, maximum depth of 6 m) equipped with regular and random plunger wave generator. The resonance draft of test power buoy is designed for the corresponding period of incident wave, 1.96 sec. Regular wave test results show that the heave response amplitude operator(RAO) by a test buoy has the amplification of 5.66 times higher compared to the wave amplitude at the resonance period. Test results of random waves show that the buoy has the largest spectrum area of 20.73 times higher at the point of not the resonance period but the shorter one of 1.85 sec. Therefore this study suggests the resonance power buoy for wave power generation for commercial application in the case of the coastal and oceanic area with smaller wave energy.

Physical characteristics of internal waves and its influence on acoustic propagation in the East Sea (동해 내부파의 물리적 특성과 음파전달에의 영향)

  • Han Bong Wan;Nam Sung Hyun;Yun Jae Yul;Kim Kuh;Kim Seongil;Kim Young-Gyu
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.421-424
    • /
    • 2004
  • 한국 동해시 연안역에서 2001년 6월, 2003년 5월 및 2004년 5월 해상실험 및 실시간 모니터링 부이 시스템을 통해 수집된 해양관측(수온, 유속)자료와 SAR (Synthetic Aperture Radar)위성영상을 분석한 내부파의 물리적 특성을 정리하였다. 이를 토대로 음파전달 모델(RAM)을 통해 내부파에 의한 음파전달 영향을 파악하고, 음도파관 불변 이른(Waveguide invariant theory)을 적용하여 내부파에 의한 해양 변동성을 음향학적으로 정량화 하였다.

  • PDF

Hindcast simulation of large swell waves in the East Sea (동해 이상고파 후측모의)

  • Ha, Taemin;Yoon, Jae Seon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.476-476
    • /
    • 2016
  • 근래 들어 우리나라 동해안에서 이상고파라 불리는 너울성 고파가 자주 발생하여 상당한 인명 피해를 야기하는 등 사회적으로 큰 이슈가 되고 있다. 이상고파는 일반적으로 동해상에서 발달한 강한 저기압에 의해 발생한 고파가 상대적으로 주기가 긴 너울의 특성을 띄며 우리나라 연안에 도달하여 피해를 발생시키는 것으로 알려져 있으며, 연안에 해상상태가 잦아지는 상황에서 갑작스럽게 전파되어 오기 때문에 많은 인명피해가 발생하게 된다. 현재 미국 등의 해양예보 선진국들은 파랑모델을 운용하여 너울을 포함한 파랑예보를 수행하고 있으며, 해상부이 등의 다양한 파랑관측을 통해 그 성능을 향상시키고 있다. 우리나라에서도 선진 해양예보시스템을 활용하여 이상고파를 예측하고자 하는 연구의 필요성이 제기되고 있으며 정부 관련 부처를 중심으로 그에 대한 연구가 점차 진행되고 있다. 본 연구에서는 파랑모델을 활용하여 기존에 발생한 이상고파 피해사례에 대한 후측모의를 수행하고 우리나라에서 발생하는 이상고파의 발달과정을 분석하였다. 또한, 파랑모델의 후측모의 결과를 관측자료와 비교하여 모델의 성능을 검증하고 문제점을 분석하였다.

  • PDF

Numerical Simulation of Storm Surge and Wave due to Typhoon Kong-Rey of 2018 (2018년 태풍 콩레이에 대한 폭풍해일과 파랑 수치모의)

  • Kwon, Kab Keun;Jho, Myeong Hwan;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.252-261
    • /
    • 2020
  • Numerical simulations of the storm surge and waves induced by the Typhoon Kong-Rey incident on the south coast of Korea in 2018 are conducted using the JMA-MSM weather field provided by the Japan Meteorological Agency, and the calculated surge heights are compared with the time history observed at harbours along the south-east coast. For the waves occurring coincidentally with the storm surges the calculated significant wave heights are compared with the data measured using the wave buoys operated by the KHOA (Korea Hydrographic and Oceanographic Agency) and the KMA (Korea Meteorological Administration), and the data observed at AWAC stations of the KIOST (Korea Institute of Ocean Science and Technology). Additional simulations are also performed based on the pressure and wind fields obtained using the best track information provided by the JTWC (Joint Typhoon Warning Center) of the United States, and the results are compared and analyzed. Based on the results of this study it is found that the reliable weather fields are essential for the accurate simulation of storm surges and waves.

Introduction of Surface Current Measurement Based on X-band Radar (X-밴드 레이더 기반 표층해류 계측 기법 소개)

  • Na-Yun Kang;Jose Carlos Nieto-Borge;Young-Jun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.424-425
    • /
    • 2022
  • This paper introduces X-band radar-based surface current measurement technique. A marine X-band radar used for navigation was installed at Sokcho Beach to collect surface current data in real time. Based on this, in order to verify the accuracy of the measurement of surface current (Current speed), the Korea Hydrographic and Oceanographic Agency Marine observation buoy compared it with the data. Data collected from January 2022 were compared and as a result the possibility of surface current(Current speed) measurement using radar confirmed.

  • PDF

Wave Modeling considering Water Level Changes and Currents Effects (수위변화와 흐름효과를 고려한 파랑모델링)

  • Eum, Ho-Sik;Kang, Tae-Soon;Nam, Soo-Yong;Jeong, Won-Moo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.383-396
    • /
    • 2016
  • In this study, wave model was conducted on the presence or absence of water level changes and currents effects in coastal waters coexisting with waves and currents, then the results were compared. The flow field applied the results of the RIAMOM model and the wave model applied the SWAN model. Among ECMWF, NCEP and JMA, wind data applied JMA data sets which agreed well with the observed data comparatively. Numerical simulation was conducted for 8 months from January to August 2016. For each case, the deviation of wave height was calculated for the high wave of more than 2.5 m for comparison with observed data. As a result, the deviation of wave height was not significant both considering water level changes and currents effects or not at wave observation stations installed in deep waters. However, a significant deviation of wave height of 5~10% was obtained depending on water level changes and currents effects at the comparison point in shallow waters.

A Recurring Eddy off the Korean Northest Coast Captured on Satellite Ocean Color and Sea Surface Temperature Imagery (위성의 해색 영상과 해수면온도 영상을 활용한 재발생 와동류에 관한 연구)

  • ;B.G.Mitchell
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 1999
  • A recurring eddy which located at the terminal end of the Korean East Warm Current was captured on ocean color and sea surface temperature imagery from satellite in spring and autumn. During late April, 1997 thermal infrared imagery from the NOAA AVHRR sensor and ocean color data from the Japanese ADEOS-I OCTS sensor, revealed this feature. The cold core had elevated chlorophyll concentrations, based on OCTS estimates, of greater than 3 mg/m$^3$ while the warmer surrounding waters had chlorophyll concentrations of 1 mg/m$^3$ or less. The elevated cholophyll accociated with this eddy has not been previously described. The eddy is also evident in SST images from autumn, but the SST in the core is warmer than in spring, and the warm jet flowing to the west of the eddy is also warmer is autumn compared to spring. A reccurring eddy and the high chlorophyll_a concentration area which surround around the eddy show on NOAA and SeaWiFS images in March 2, 1998. The eddy forms at the northern extent of the Korean East Warm Current as those waters collide with the cold, south-flowing Liman Current over a topographic shelf about 1500 m deep. This region of the eddy formation appears to have a strong connection with the dynamics of the western part of the polar front eddy field that dominates surface mesoscale structure in the central East (Japan) Sea. Interaction of the eddy with ARGOW tracked drifters, and evidence for its persistence are discussed.