• 제목/요약/키워드: 부실예측

검색결과 101건 처리시간 0.026초

지반굴착 시나리오 기반의 다공성 매질에 대한 3차원 유동해석모델 구축 (Development of 3-D Flow Model for Porous Media with Scenario-based Ground Excavation)

  • 차장환;이재영;김우석
    • 한국방재안전학회논문집
    • /
    • 제10권1호
    • /
    • pp.19-27
    • /
    • 2017
  • 최근 도심지에서 상하수도 등의 지중매설관 노후 및 접합 불량에 따른 누수에 의해 일어나거나, 터널굴착 및 지하구조물 시공 시 부실시공 또는 관리 부실로 인한 지하수의 유입으로 지중공동이 발생하고 이로 인하여 지반침하가 빈번하게 발생하고 있다. 이에 본 연구에서는 포화-불포화 다공성 매질에 대한 지하수 변동을 예측할 수 있는 수치모델(SEEFLOW3D)을 개발하였으며 개착식 및 비개착식 굴착 시나리오를 구성하여 지반굴착에 따른 영향을 모사하였다. 또한, 개발모델의 검증을 위해 범용수치해석 프로그램(Visual MODFLOW)과 비교 분석을 수행하였다. 그 결과 평균 오차는 -3.95~5.72%이며 정규화 된 RMSE는 0.56~4.62%로 나타났다. 향후 본 연구의 개발모델은 지반굴착 공사 시 지하수 유출량을 예측하고 이에 따른 차수벽의 최적 설계 등을 위한 해석툴로 활용 가능할 것으로 기대된다.

기업부도 예측 앙상블 모형의 최적화 (The Optimization of Ensembles for Bankruptcy Prediction)

  • 김명종;윤우섭
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.39-57
    • /
    • 2022
  • 본 연구에서는 범주 불균형 문제가 내재된 기업부도 예측 AdaBoost 앙상블 모형의 성과를 개선하기 위하여 GMOPTBoost 알고리즘을 제안한다. AdaBoost 알고리즘은 오분류 표본에 대하여 강건한 학습기회를 제공한다는 장점이 있지만, 산술평균 정확도에 기반하기 때문에 범주 불균형 문제를 효과적으로 해결하지 못한다는 한계점이 존재한다. GMOPTBoost는 가우시안 경사하강법(Gaussian gradient descent)을 적용하여 기하평균 정확도를 최적화하고 범주 불균형 문제를 효과적으로 해결할 수 있다는 장점이 있다. 본 연구에서는 첫째, 범주 불균형 문제가 예측 모형의 성과에 미치는 효과와 GMOPTBoost의 성과 개선 효과를 검증하기 위하여 5개의 범주 불균형 데이터를 구성하였으며, 둘째, 범주 균형 데이터에 대한 GMOPTBoost의 성과 개선 효과를 검증하기 위하여 데이터 샘플링 기법을 통하여 구성된 균형 데이터를 구성하였다. 30회의 교차타당성 분석의 주요 결과는 다음과 같다. 첫째, 범주 불균형 문제는 예측 성과에 부정적인 영향을 미친다. 둘째, GMOPTBoost는 불균형 데이터에 적용된 AdaBoost의 성과를 유의적으로 개선시키는 긍정적인 효과를 제공한다. 셋째, 데이터 샘플링 기법은 성과 개선에 긍정적인 영향을 미친다. 마지막으로 데이터 샘플링 기법을 적용한 범주 균형 데이터에서도 GMOPTBoost는 유의적인 성과 개선에 기여한다.

지열원 열펌프 시스템 개발 및 보급 활성화 개선방안 (GSHP System Development and Dissemination Issues)

  • 이의준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.202-205
    • /
    • 2006
  • 최근 지열원 열펌프 시스템 설치가 해마다 평균 10-30%젓도 꾸주히 증가하고 있다 주요 연구동향은 토양열전도 측정, 지열히트펌프 시스템 전주기 성능평가 하이브리드 시스템의 초기비용 저감과 이러한 지열원 열펌프 시스템 설계방법분야 개발에 대해 초점이 맞춰지고 있다. 특히 국내에서 현재 시공되어진 많은 시스템들이 부실시공의 문제에 노출되고 있으며 이러한 시점에서 현재의 저가 입찰제도 보다는 외국 사례와 같은 성능확인 제도로의 전환 및 많은 연구가 필요하다. 성능확인제도는 사전 성능 예측과 사후 성능 확인 검증으로 구성되며 본 기술현안 보고서는 최근 국내외 연구동향 및 사전 성능 예측과 사후 성능 검증 관하여 정리하여 본다.

  • PDF

주택담보대출 규제 완화에 따른 부동산시장 영향 분석: 시스템다이내믹스 모형 개발 (Analysis of the Korean Real Estate Market and Boosting Policies Focusing on Mortgage Loans: Using System Dynamics)

  • 황성주;박문서;이현수;윤유상
    • 한국건설관리학회논문집
    • /
    • 제11권1호
    • /
    • pp.101-112
    • /
    • 2010
  • 최근, 미국에서 발생한 주택담보대출시장 비우량대출 부실로 인한 세계 금융위기에 따라, 우리나라 주택시장 또한 침체를 겪고 있다. 이에 대한 대응으로 정부는 주택 수요 활성화를 위한 다양한 규제 완화 정책을 시도 하고 있다. 특히, 주택담보대출비율(LTV) 및 총부채상환비율(DTI) 와 같은 주택담보대출 기준의 완화를 통해 주택수요 및 주택 거래의 활성화를 기대하고 있으며, 2차 주택담보대출시장을 활성화하여 주택 수요의 지속적인 발생을 유도하고자 한다. 그러나 이러한 정책은 비우량 대출 부실로 시작된 세계 금융위기에 역행하는 시도가 될 수 있다. 이러한 상황에서, 시장에 대한 예측은 대부분 단편적인 시각으로 이루어지고 있어, 향후 주택시장의 변화에 대한 종합적이고 체계적인 예측 방법론에 대한 필요성이 대두되고 있다. 따라서 본 연구는, 주택시장 및 주택담보대출시장을 구성하는 기본 요소를 바탕으로 통합된 관점의 주택시장 시스템다이내믹스 연구 모형을 작성한다. 또한, 연구 모형을 통해 정부의 주택담보대출 규제완화가 시장 참여자에 미치는 영향을 알아본다. 이는 수요 자극을 통해 침체된 주택시장의 주택거래 활성화 효과를 기대하고 있으나, 제 2 주택담보대출 시장의 형성 및 부실 파생상품 생성 가능성을 높일 위험을 갖고 있다.

중국 상업은행의 유가증권투자가 경영성과에 미치는 영향 (The Study on the Impact of China Banks' Securities Asset Management on Financial performance)

  • 배수현
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.89-94
    • /
    • 2023
  • 최근 중국 회사채시장의 신용위험이 크게 증가하고 있으며, 회사채의 대부분을 중국 금융기관이 보유하고 있기 때문에 회사채 주요 투자자인 은행의 부실화 가능성을 배제할 수 없다. 따라서 본 연구는 중국 상업은행의 유가증권 투자비중이 경영성과에 미치는 영향을 실증분석 하였다. 분석결과를 요약하면 다음과 같다. 첫째, 중국 상업은행의 유가증권 투자비중이 증가할수록 은행의 수익성은 낮아지는 것으로 추정되었다. 현재 중국 금융당국이 금융리스크를 축소하고 경영건전성을 제고하기 위해 노력하고 있으나 회사채시장의 신용위험 증가 및 한계기업 증가로 유가증권투자는 수익성에 긍정적인 영향을 주지 못한 것으로 나타났다. 둘째, 중국 상업은행의 유가증권 투자비중이 증가할수록 은행의 건전성이 낮아지는 것으로 추정되었다. 유가증권투자가 고정이하여신비율에 직접적인 영향을 주지는 않지만 공격적인 경영으로 인해 대출자산의 부실여신이 증가한 것으로 예측된다. 중국 자본시장의 신용위험이 증가하고 있는 만큼 향후 지속적으로 부실자산에 대한 관리가 요구된다. 중국 상업은행들은 예대마진 중심의 수익확대로는 한계가 있으며, 수익성 제고를 위해 대출자산 외에 유가증권투자를 통한 포트폴리오 관리가 필요하다. 단, 회사채의 주요 투자자인 은행의 부실화 가능성이 존재함에 따라 변동성 관리를 위하여 유가증권 운용규모를 적정수준으로 조정하여 변동성을 줄이고 경영성과를 제고하기 위한 실무적 전략이 요구됨을 시사한다.

로짓분석을 통한 중소기업 정책자금 지원의 위험예측력에 대한 연구 (The Study on the Risk Predict Method and Government Funds Supporting for Small and Medium Enterprises)

  • 최창열;함형범
    • 경영과정보연구
    • /
    • 제28권3호
    • /
    • pp.1-23
    • /
    • 2009
  • 본 연구에서는 중소기업 정책자금을 지원받는 상장기업을 대상으로 위험 예측모형을 제시하고자 한다. 정책자금을 지원하는 기관 입장에서는 대상기업의 위험성을 판단하는 것은 자산의 건전한 운용을 위해 중요한 과제일 것이다. 리스크 예측 방법은 J.P.Morgon의 CreditMetrics를 이용한 보증기관의 경제자본 측정과 신용자산배분, 극단적 상황에서 이용할 수 있는 스트레스 테스팅(stress testing)기법, 판별 분석 모형, 로짓분석 등 다양한 방법이 존재한다. 본 연구에서는 로짓분석을 통해 정책자금의 건전한 운용을 위해 정책자금 지원 기관에 대한 부실위험을 살펴본다. 분석을 위해 먼저 기존 연구에 대한 검토와 최근 기업도산의 상황을 감안하여 14개의 재무지표를 선정한 다음 수행한 로짓회귀분석의 결과 추정계수로 로짓반응함수와 로지스틱 반응함수를 구성할 수 있다. 여기서는 정상기업/도산기업에 있어서 자기자본대타인자본비율, 매출액경상이익율, 총자산영업이익율, 총자산회전율, 매출채권회전율, 재고자산회전율만이 도산가능성을 예측하는데 유용한 변수로 선택되었다. 이는 재무비율 상호간의 높은 상호간 관계로 인하여 다수의 재무비율이 지닌 정보의 대부분이 소수의 재무비율에 의하여 파악될 수 있음을 의미한다. 또한 부실기업/도산기업의 구분에 있어서는 모든 비율이 두 그룹을 구분 짓는데 설명력이 높음을 나타내고 있다. 또한 총자산이익잉여금율이 높은 기업일수록 도산가능성이 낮다는 것을 두 그룹 모두에서 보여주고 있으며 회귀계수의 유의수준도 가장 높다. 금융비용부담율 또한 그 비율이 높은 기업일수록 도산가능성이 높다는 것을 제시하고 있다. 순운전자본비율, 자기자본비율, 매출액순이익율, 총자산영업이익율, 총자산회전율, 재고자산회전율은 도산기능성에 기대된 (-)의 영향을 미치는 것으로 나타나고 있다.

  • PDF

퍼지신경망을 이용한 기업부도예측 (Bankruptcy Prediction using Fuzzy Neural Networks)

  • 김경재;한인구
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.135-147
    • /
    • 2001
  • 본 연구에서는 퍼지신경망을 이용한 기업부실예측모형을 제안한다. 신경망은 탁월한 학습능력을 가진 것으로 알려져 있으나, 잡음이 심한 재무자료에 대해서는 종종 일관되지 못하고 기대에 미치지 못하는 예측성과를 보인다. 이는 연속형의 형태를 지닌 독립변수와 과다한 양의 원자료로부터 예측에 필요한 일정한 패턴을 찾기가 어렵기 때문이다. 이러한 문제점은 예측모형에서의 독립변수와 종속변수간의 인과관계를 신경망이 용이하게 찾아낼 수 있도록 독립변수의 형태를 변환함으로써 해결한 수 있다. 이러한 해결방법의 하나는 기존 신경망에 퍼지집합의 개념을 적용하여 신경망 학습에 사용될 자료를 퍼지화하고 이를 신경망에 학습시키는 것이다 입력자료를 퍼지화 함으로써 정보의 손실 없이도 신경망이 자료 내의 복잡한 관계를 용이하게 학습하는 것이 가능하다. 본 연구에서 제안된 퍼지신경망을 기업부도예측에 적용한 결과, 퍼지신경망이 기존의 신경망보다 우월한 예측성과를 나타내었다.

  • PDF

Modified Bagging Predictors를 이용한 SOHO 부도 예측 (SOHO Bankruptcy Prediction Using Modified Bagging Predictors)

  • 김승혁;김종우
    • 지능정보연구
    • /
    • 제13권2호
    • /
    • pp.15-26
    • /
    • 2007
  • 본 연구에서는 기존 Bagging Predictors에 수정을 가한 Modified Bagging Predictors를 이용하여 SOHO에 대한 부도예측 모델을 제시한다. 대기업 및 중소기업에 대한 기업부도예측 모델에 대한 많은 선행 연구가 있어왔지만 SOHO만의 기업부도 예측 모델에 관한 연구는 미비한 상태이다. 금융기관들의 대출 심사 시 대기업 및 중소기업과는 달리 SOHO에 대한 대출심사는 아직은 체계화되지 못한 채 신용정보점수 등의 단편적인 요소를 사용하고 있는 것이 현실이고 이에 따라 잘못된 대출로 인한 금융기관의 부실화를 초래할 위험성이 크다. 본 연구에서는 실제국내은행의 SOHO 대출 데이터 집합이 사용되었다. 먼저, 기업부도 예측 모델에서 우수하다고 연구되어진 인공신경망과 의사결정나무 추론 기법을 적용하여 보았지만 만족할 만한 성과를 이끌어내지 못하여, 기존 기업부도 예측 모델 연구에서 적용이 미비하였던 Bagging Predictors와 이를 개선한 Modified Bagging Predictors를 제시하고 이를 적용하여 보았다. 연구결과, SOHO 부도 예측에 있어서 본 연구에서 제시한 Modified Bagging Predictors가 인공신경망과 Bagging Predictors 등의 기존 기법에 비해서 성과가 향상됨을 알 수 있었다.

  • PDF

비대칭 마진 SVM 최적화 모델을 이용한 기업부실 예측모형의 범주 불균형 문제 해결 (Optimization of Uneven Margin SVM to Solve Class Imbalance in Bankruptcy Prediction)

  • 조성임;김명종
    • 경영정보학연구
    • /
    • 제24권4호
    • /
    • pp.23-40
    • /
    • 2022
  • Support Vector Machine(SVM)은 기업부실 예측문제 등 다양한 분야에서 성공적으로 활용되어 왔으나 범주 불균형 문제가 존재하는 경우 다수 범주의 경계영역은 확장되는 반면, 소수 범주의 경계영역은 축소되고 분류 경계선이 소수 범주로 편향되어 분류 성과에 부정적인 영향을 미치는 것으로 보고되고 있다. 본 연구는 범주 불균형 문제에 대한 대칭 마진 SVM(EMSVM)의 한계점을 개선하기 위하여 비대칭 마진 SVM(UMSVM)과 임계점 이동 기법을 결합한 최적화 비대칭 마진 SVM인 OPT-UMSVM을 제안한다. OPT-UMSVM은 소수 범주 방향으로 치우진 분류 경계선을 다수 범주로 재이동함으로써 소수 범주의 민감도를 개선하고 최적화된 분류 성과를 산출함으로써 SVM의 일반화 능력을 향상시키는 장점을 가진다. OPT-UMSVM의 성과 개선 효과를 검증하기 위하여 불균형 비율이 상이한 5개의 표본군을 구성하여 10-fold 교차타당성 검증을 수행한 결과는 다음과 같다. 첫째, 범주 불균형이 미미한 표본에서 UMSVM은 EMSVM의 성과 개선 효과가 미약한 반면, 범주 불균형이 심화된 표본에서 UMSVM은 EMSVM의 성과개선에 크게 공헌하고 있다. 둘째, OPT-UMSVM은 EMSVM 및 기존의 UMSVM과 비교하여 범주 균형 및 범주 불균형 표본 모두에서 보다 우수한 성과를 가지고 있으며, 특히 범주 불균형이 심화된 표본에서 유의적인 성과 차이를 보였다.

XAI 기반 기업부도예측 분류모델 연구 (A Study on Classification Models for Predicting Bankruptcy Based on XAI)

  • 김지홍;문남미
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권8호
    • /
    • pp.333-340
    • /
    • 2023
  • 기업 부도의 효율적인 예측은 금융기관의 적절한 대출 결정과 여신 부실률 감소 측면에서 중요한 부분이다. 많은 연구에서 인공지능 기술을 활용한 분류모델 연구를 진행하였다. 금융 산업 특성상 새로운 예측 모델의 성능이 우수하더라도 어떤 근거로 결과를 출력했는지 직관적인 설명이 수반되어야 한다. 최근 미국, EU, 한국 등 에서는 공통적으로 알고리즘의 설명요구권을 제시하고 있어 금융권 AI 활용에 투명성을 확보하여야 한다. 본 논문에서는 외부에 오픈된 기업부도 데이터를 활용하여 인공지능 기반의 해석 가능한 분류 예측 모델을 제안하였다. 먼저 데이터 전처리 작업, 5겹 교차검증 등을 수행하고 로지스틱 회귀, SVM, XGBoost, LightGBM 등 10가지 지도학습 분류모델 최적화를 통해 분류 성능을 비교하였다. 그 결과 LightGBM이 가장 우수한 모델로 확인되었고, 설명 가능한 인공지능 기법인 SHAP을 적용하여 부도예측 과정에 대한 사후 설명을 제공하였다.