• Title/Summary/Keyword: 부식피로)

Search Result 200, Processing Time 0.022 seconds

용접잔류 응력과 용접변형의 발생機構와 그 대책

  • 김영식
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.17-27
    • /
    • 1989
  • 용접에 이와 같이 발생하는 용접잔류응력과 변형은 용접구조물의 제작시 여러 가지 장해를 유발 할 뿐만 아니고 그 구조물의 사용중에 있어서도 파괴의 발생 또는 파괴의 전파에 직.간접적으로 기여하여 악영향을 끼치게 된다. 용접잔류응력은 용접구조물의 피로감도를 저하시키거나, 취성균 열 및 응력부식균열의 진전을 용이하게 하며 용접변형은 구조물의 외관을 해치거나 국부적으로 스트레인집중을 초래하여 이 역시 취성파괴의 원인으로 작용하여 구조물의 파괴사고를 유발할 위험성을 내포하고 있다. 따라서 용접변형과 잔류응력을 극도화하기 위한 대책은 용접기술자로 서 용접시공시 유의해야 할 가장 큰 사항의 하나라고 할 수 있다. 보고에서는 이러한 용접변형 과 잔류응력현상에 대해 그 발생기구를 금속학적 측면에서 고찰하고 그 경감대책에 대해서는 구 조물의 형상이나 종류에 따라 각각별개의 대책이 수립되어야 하나 여기서는 보편적인 경우에 한 해 해설하고저 한다.

  • PDF

Study on corrosion fatigue of high strength steel (고장력강의 부식피로에 관한 연구)

  • 유헌일;천기정;택목양삼
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.32-44
    • /
    • 1983
  • In case of $K_{Imax}$ < $K_{Iscc}$, the corrosion fatigue of high strength steel in 0.1N $H_{2}$S $O_{4}$ solution and 3.5% salt water is as follows. 1. The fatigue life shortens in order of 3.5% salt water and 0.1N $H_{2}$S $o_{4}$ solution. 2. The fatigue crack growth rate in air is obtained as the following equation. (dc/dN)$_{atr}$=7.23*10$^{-6}$ (.DELTA. K)$^{2.23}$ 3. The corrosion fatigue crack growth rate in environment is divided into three regions, that is, First Region, Second Region and Third Region from the small cyclic stress intensity. 4. The formation rate of the active surface on metal is slower than the mechano-chemical reaction rate in First Region. The crack growth rate depends on time and the cyclic stress intensity and is expressed as the following equation. (dc/dN)$_{I}$=C(/DELTA. K)$^{\delta}$ 5. The formation rate of the active surface is faster than the mechano-chemical reaction rate in Second Region and the synergistic effect by stress and corrosion becomes slow. In case the fatigue load is large, we have the critical crack growth rate which is not related to the cyclic stress intensity. 6. The corrosion crack growth rate by the mechano-chemical reaction is the same in $H_{2}$S $O_{4}$ solution and salt water, so Hydrogen accelerates the crack growth. 7. The environment has no effect on the corrosion fatigue crack growth rate in Third Region. 8. In First Region and Second Region, dimple is observed on the fatigue fracture surface in 0.1N $H_{2}$S $O_{4}$ solution. 9. The striation is observed in any environment as in air in Third Region and its interval approximately coincide with the crack growth rate.ate.e.e.

  • PDF

The study on corrosion fatigue and cathodic protection of the steel plates used for the shipbuilding (조선용강재의 부식피로와 전기방식에 관한 연구)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.126-142
    • /
    • 1985
  • The plane bending corrosiion fatigue test for the welded metal parats was performed in the air and in the natural sea water with and without applying cathodic protection. The specimens tested were the weld of SM41 steel plates, SM58 steel plates and of SM41 to SM58, which were all prepared by submerged arc welding. The main results obtained from the experiment are summarized as follows: (1) In case with SM41 and SM58 steel plates, lower value of impact strength, higher value of hardness and more noble electrode potential were observed in the welded metal part than in the HAZ and base metal. Also the lowest hardness zone in the HAZ was observed with SM58 which was not found with SM41. In case with weld specimen of SM41 to SM58, the impact strength and the electrode potential of the welded metal part showed again the lowest and most noble value but the hardness value was located between those of SM41 and SM58 base metal. (2) In the fatigue test, the specimens tested in the air and under the cathodic protection were both cracked in a purely mechanical mode, but the specimens tested without cathodic protection were cracked by the combination of mechanical fracture and electro-chemical corrosion. (3) The corrosion fatigue limit of the welded metal parts of the specimen was increased by the cathodic protection. As the protection potential was varied down to -800 mV vs. SCE the fatigue limit was increased to the value tested in the air, and the maximum fatigue limit appeared at the -1, 000 - -1, 200 mV vs. SCE. However, as the protection potential was further decreased below -1, 200 mV vs.SCE, the fatigue limit of weld of SM58 and of SM41-SM58 joining was decreased but the limit was almost constant in the case of weld of SM41. (4) It is suggested that when designing steel ship the corrosion fatigue limit of welded metal parts should be stressed as a designing strength of the structure of steel ship in addition to the conventional basis considering simply tensile strength of steel and safety factor.

  • PDF

A Study on the Behavior in the Corner Crack Propagation of Al-Alloy used for the Shipbuilding by the Corrosion Fatigue (부식피로에 의한 선박용 알루미늄 합금제 용접부의 균열 전파기동에 관한 연구)

  • Im, U-Jo;Lee, Jin-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.164-171
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuilding industries such as marine structures, ships and chemical plants, it takes much interest in the study of corrosion fatigue characteristics that was close up an important role in mechanical design. In this study, characteristics of corner crack propagation on the base metal and heat affected zone of 5086 Al-Alloy was tested by using of a rotary bending fatigue tester and was investigated under the environments of specific resistance, $\rho$=25$\Omega$ cm and air. The corrosion fatigue crack initiation and corrosion fatigue life sensitivity were quantitatively inspected for 5086 Al-Alloy in the specific resistance, $\rho$=25$\Omega$ cm. Main results obtained are as follows: (1) The corrosion sensitivity of heat affected zone under specific resistance, $\rho$=25$\Omega$cm shows approximately 1.69~2.22 and corrosion sensitivity of base metal is more susceptible than that of heat affected zone. (2) The corrosion fatigue life sensitivity on heat affected zone decreases eminently than that of initial corrosion fatigue crack. (3) The characteristics of quarter elliptical corner crack propagation shows that depth crack is more grown than surface crack at crack initiation, but the surface crack is more propagated than depth crack as the crack propagation is increased. (4) The surface crack and depth crack growth on heat affected zone by softness show delayed phenomenon than that of base metal.

  • PDF

Development of Torsion Bar for Antiroll-Bar Assembly for Express Train (고속철도용 안티롤바 어셈블리의 토션바 개발)

  • Tominaga, Yasutoshi;Pyun, Young-Sik;Kim, Dong-Il;Choe, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.979-984
    • /
    • 2012
  • An antiroll-bar assembly is a precision component that is designed to control the rolling of railway cars. It is important for ensuring a safe and comfortable ride. A torsion bar is the main part of the antiroll-bar assembly. Now, this part is classified as a consumable, and it is imported into Korea from France. Therefore, there is a strong need to domestically develop a torsion bar suitable for Korean conditions and to reduce cost and improve quality. In this study, an antiroll bar is developed, and it is analyzed and tested by using a road histogram measured on Korean railroads. This bar shows satisfactory results in a comparison with the imported bar. It has a novel design featuring a ring cover made of SUS steels to prevent the corrosion of the torsion bar. Its safety is examined through CAE analysis and wear tests. It is found that its design does not result in a significant difference in static and fatigue safety. Two different SUS steels were investigated in terms of their wear resistance, and the best one was adopted.

A Study on Development of Displacement Measurement System for Structure using a Laser and 2-D Arrayed Photo Sensors (레이저와 2차원 배열의 광전검출기를 이용한 구조물의 변위측정 시스템의 개발에 관한 연구)

  • Kang, Moon-Phil;Lee, Jin-Yi;Kim, Min-Soo;Kim, Dae-Jung;Choe, Won-Ha;Kang, Ki-Hun;Kim, Jong-Soo;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 2002
  • A Safety Monitoring System using a laser and 2-D arrayed photo sensors is developed. To monitor of the deformation and small rotation of structure the developed optical system using 2-D photo sensor array was used to detect the variation of optical orbit of laser which was induced by deformation of the structure. Also, an operating program to manage the system and an algorithm for the data acquisition and the database are introduced. In this study, we demonstrated the capabilities of this system by laboratory experiments before applying the system to the field.

Variation of Material Characteristics of a Hot-formed AZ31 Magnesium Alloy (마그네슘 합금 AZ31의 온간성형과 재료특성변화에 관한 연구)

  • Suh, Chang-Min;Hor, Kwang-Ho;Kim, Hyo-Min;Suh, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.913-919
    • /
    • 2013
  • Magnesium alloys are known to be hard-forming materials at room temperature owing to their material structure. This study analyzes the optimal temperature conditions of warm-forming and the forming process by using a high-pressure laminating test and FM analysis, respectively. The effect of temperature on the fatigue limit was examined from the collected specimens by analyzing the material properties after the fatigue test. The material formed at a temperature of $230^{\circ}C$ shows occasional defects, but the best forming quality was obtained at $270^{\circ}C$. The optimal temperature for the forming process was found to be $250^{\circ}C$ considering the material quality and thermal efficiency. The overall fatigue life of specimens decreases with an increase in the processing temperature. The fatigue limit of AZ31 formed at $250^{\circ}C$ was approximately 100 MPa after $10^6$ cycles.

Application of a New NDI Method using Magneto-Optical Film for Inspection of Micro-Cracks (미소균열 탐상을 위한 자기광학소자를 이용한 비파괴탐상법의 제안과 적용)

  • Lee, Hyoung-No;Park, Han-Ju;Shoji, Tetsuo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.197-203
    • /
    • 2001
  • Micro-defects induced by design and production failure or working environments are known as the cause of SCC(Stress Corrosion Cracking) in aged structures. Therefore, the evaluation of structural integrity based on micro-cracks is required not only a manufacturing step but also in-service term. So we introduce a new nondestructive inspection method using the magneto-optical film to detect micro-cracks. The method has some advantage such as high testing speed, real time data acquistion and the possibility of remote sensing by using of a magneto-optical film that takes advantage of the change of magnetic domains and domain walls. This paper introduces the concept of the new nondestructive inspection method using the magneto-optical film, also proves the possibility of this method as a remote testing system under oscillating load considering application on real fields by applying the method to four types of specimens.

  • PDF

Development and Application of Anti-Corrosive Steel Using Electro-Deposition of Sea Water (2)- Evaluation of Application Rebar with Electro-Deposition Using Sea Water (해수전착 코팅을 이용한 내부식성 철근의 개발 및 적용성에 대한 연구 (2) -해수전착된 구조용 철근의 적용성 평가)

  • Kwon, Seung Jun;Lee, Sang Min;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.155-162
    • /
    • 2012
  • When RC (Reinforced Concrete) structures are exposed to sea water, steel corrosion can occur and this leads a degradation of structural performance. Referring the electro-deposition system with sea water from the 1st step research, durability and structural performance are evaluated in coated steel and RC members containing it in the 2nd research. In the durability performance test, Half Cell Potential test is performed and the coated steel is evaluated to have the high resistance to corrosion, which shows only 35% of corrosion velocity in normal (bare) steel. In the structural performance test, tensile strength, adhesive strength, and flexural/shear in RC member are performed. For the electro-deposit coated steel, increasing ratios of 3.2% and 8.8% are evaluated in the test of tensile strength and adhesive strength, respectively. For the structural test in RC member, there is no big difference between RC members with coated and non-coated steel in ultimate load and failure pattern It is evaluated that the chemical compound with $CaCO_3$ and $Mg(OH)_2$ from electro-deposition causes slightly increased structural performance. The electro-deposit coated steel can be more widely applied after performance verification from several tests like fatigue, resistance to impact, and long term-submerging test.

Evaluation on Degradation of Heat exchanger (열교환기의 경년열화 평가)

  • Oh H.S.;Jung H.Y.;Park S.P.;Yang S.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1672-1677
    • /
    • 2005
  • The Heat exchanger to be used in the place of business that is presented an utility period comes to be long and the problem of the length of life shares by the manufacture course and using environment factor. Consequentl, it is came to the front problem of inspection, repair, exchange, the utility stopping, safety and confidence. As a result the possibility which the large safety accident can happen comes to be high. It leads mostly to the large accedent when the explosion accident happens. to keep this, The system which the regular period passes to disuse the structure is prepared but The phenomenon which Time and the strength characteristic of the material change, namely Deradation. but It can't be a preventable solution by accident to the damage. Consequentl, This research can take important role to prevent an every kind accident for domestic pressure vessel by evaluating the mechnical characteristic change of meterial, the structure safety and residual life etc.

  • PDF