• Title/Summary/Keyword: 부식철근

Search Result 539, Processing Time 0.019 seconds

Seismic-performance Experiments of Circular Shear Piers Considering Effects of Rebar Corrosion, Lap splice and Axial Load (철근부식, 겹침이음 및 축하중의 영향을 고려한 원형 전단 교각의 내진성능실험)

  • Lee, Soo-Hyung;Lee, Seung-Geon;Lee, Hyerin;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.143-153
    • /
    • 2021
  • The corroded pier that has corrosion of the tranverse steel, main steel and lapsplice directly affects the seismic performance. The corrosion of the tranvese and main steel directly reduce the shear strength and bendig strength. If steel corrosion occurs in lap splice, the flexural strength and flexibility of existing corroded pier that are not seismic design are significantly reduced. In addition, as the axial force acting on the pier increase the shear strength. Considering these effects. In this stuydy, we cosidered steel corrosion, lap splice and axial force, for a reasonable evaluation of seismic-performance. It is confirmed that flexular failure occurs at pies where shear failure is expected to occur due to corrosion of reinforcement. These failure modes and their reason are analyzed, and necessary considerations are presented for seismic reinforcement.

Corrosion-Resisting Performance Evaluation of Concrete Mixed with Fly-Ash (플라이애시 혼합 콘크리트의 철근 부식 저항성능 평가)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2017
  • The role of fly ash in concrete become impotent with finding the characteristics of fly ash in which it is used as cement replacement material. In this paper, corrosion test results obtained by two test methods such as the long-term exposure corrosion test and the accelerated corrosion test method, were compared to investigated the corrosion resistance between fly ash concrete and normal concrete. Corrosion initiation time was measured in two types of concrete, i.e., one mixed with fly ash(FA) and the other without admixture(OPC). The accelerated corrosion test was carried out by four case, i.e., two samples is a cyclic drying-wetting method combined without carbonation(case 1) and combined with carbonation(case 2), and the other two samples is a artificial seawater ponding test method combined without carbonation(case 3) and combined with carbonation(case 4). Whether corrosion occurs, it was measures using half-cell potential method. The ponding test combined without carbonation was most effective in accelerating corrosion time of steel bars. The results indicated that the corrosion of rebar embedded in concrete occurred according to the order of OPC, FA. The delay relative ratio of corrosion obtained by corrosion initiation time between FA and OPC is 1.04 to 1.27. Consequently, fly ash concrete as the age increases its corrosion resistance was improved compared with OPC concrete.

Evaluation of Cross-Sectional Damage for RC Column Subjected to Axial Loading and Steel Corrosion (철근 부식과 축방향 하중을 받는 철근-콘크리트 기둥 단면의 손상 평가)

  • Changyoung Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.476-483
    • /
    • 2023
  • The present study concerns modelling the structural behaviour for concrete structure into the crack initiation at corrosion of steels. The degradation source included the axial load and steel corrosion. A development of the rust formed on the steel surface was considered with the interfacial gap between steel and concrete. As a result, the tensile damage could occur on the surface of concrete into the cracking with no steel corrosion, which could be further developed by the increasing rust formation, while the cracking at the steel-concrete interface was mainly attributed to the compressive deformation, being restricted within the interfacial zone.

Corrosion Measurement Method Using Thermographical Information (열화상 정보를 이용한 부식률 예측기법)

  • Yun, Ju-Young;Chung, Lan;Roh, Young-Sook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.142-147
    • /
    • 2007
  • In order to measure corrosion level of steel reinforcement rebar which is inside reinforced concrete structure, infrared thermographic technique was employed. Experimental test parameters were four different ambient temperatures and various levels of corrosion states (0, 1, 3, 5, 7 and 10% of weight loss). After analysis of temperature distributions of concrete surface, the amount of heat flux from the concrete surface is directly proportional to the corrosion level which is inside of concrete.

Application of Macrocell Sensor System for Monitoring of Steel Corrosion in Concrete Structure Exposed to Marine Environment (해양 콘크리트구조물의 철근부식 모니터링을 위한 매크로셀 센서 시스템의 적용)

  • Lee, Seung-Tae;Moon, Dae-Joong;Kim, Wan-Jong;Moon, Jae-Heum;Kim, Hak-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.241-247
    • /
    • 2010
  • Corrosion of steel embedded in concrete is one of the foremost factors that affect the durability of concrete structures in marine environments. This paper presents an application technique of anode-ladder-system to evaluate corrosion behaviours of marine concrete structure. In order to investigate the behaviours quantitatively, the measurement of potential and current was performed on the concrete elements subjected to the penetration and diffusion of chloride ions. The main variable was the heights from seawater level; namely 3.7, 6.0 and 8.2 m. As a result of the monitoring, it was found that the corrosion characteristics differently behaved with the increasing height. Additionally, through migration test, the relationship between compressive strength of concrete and diffusivity of chloride ions was observed. It is suggested, ultimately, that in order to reduce or mitigate steel corrosion, both appropriate concrete cover depth and high-quality of concrete in early ages should be done.

Transport Coefficients and Effect of Corrosion Resistance for SFRC (강섬유 보강 콘크리트의 수송계수 및 부식저항효과)

  • Kim, Byoung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.867-873
    • /
    • 2010
  • This study investigated the corrosion properties of reinforced concrete with the addition of steel fibers. The transport properties of steel fiber-reinforced concrete such as permeable void, absorption by capillary action, water permeability and chloride diffusion were first measured to evaluate the relationship with the corrosion of steel rebar. Test results showed a slight increase on the compressive strength with the addition of steel fibers as well as considerable improvement of penetration resistance to mass transport of harmful materials into concrete. The addition of steel fibers in reinforced concrete accelerated the initiation of steel corrosion contrary to the expected results based on the measured transport properties. The NaCl ponding surface showed the spalling failure due to the corrosion expansion of steel fibers and the cut-surface around the steel rebar showed the localized steel fiber's corrosion. The wet-dry cycling with high chloride ions as well as high temperature seems to induce the increase of salt crystallization on the pores continually and the increased pressure with the steel fiber's corrosion on the pores caused the spalling failure on the exposed surface. The microcracking on the surface therefore accelerated the movement of water, chloride ions and oxygen into the embedded steel rebar. The mechanism affecting corrosion of embedded steel reinforcement with steel fibers in this study are not yet fully understood and require further study comprising of accurate experimental design to isolate the effect of steel fiber's potential mechanism on the corrosion process.

A Study on the Application of FRP Hybrid Bar to Prevent Corrosion of Reinforcing Bar in Concrete Structure (콘크리트구조물 중의 철근 부식 저감을 위한 FRP Hybrid Bar의 적용성 연구)

  • Lee, Seung-Tae;Park, Kwang-Pil;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.559-568
    • /
    • 2019
  • Recently, the infrastructure of the marine environment has been increasing. Therefore, there has been increasing interest in increasing the durability of structures. The FRP Hybrid Bar with improved durability against corrosion was developed in recent years. On the other hand, studies that evaluate the corrosion resistance are insufficient. In this study, the corrosion resistance according to the type of rebar in concrete was assessed and analyzed. The experiment used steel bars and FRP Hybrid Bar. The corrosion test method was a galvanic current and half-cell potential method. The accelerated corrosion test was carried out by four levels (0%, 1.5%, 3%, and 6%) of chloride added to the concrete. The galvanic current measurements revealed no corrosion current in the FRP Hybrid Bar. The half-cell measurement also showed the corrosion resistance of the FRP Hybrid Bar. Therefore. FHB can be used as an alternative steel for structures where a marine environment and steel corrosion are predicted.

Effect of Corrosion Level and Crack Width on the Bond-Slip Behavior at the Interface between Concrete and Corroded Steel Rebar (부식 수준 및 균열폭에 따른 부식된 철근과 콘크리트 계면의 부착-미끄러짐 거동 )

  • Sang-Hyeon Jo;Seong-Hoon Kee;Jung-Jae Yee;Changkye Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 2023
  • In this paper, the effect of corrosion level and crack width on the cohesive strength-slip behavior of corroded steel rebar and concrete interface is conducted. The existing studies mainly focus on the decrease in bond strength with respect to the level of corrosion; there are, however, few studies on the decrease in cohesive strength according to the crack width of the concrete surface due to corrosion. Therefore, in this study, a series of tests for the cohesive strength, slip behavior and mass loss of the reinforcing bar is evaluated at the surface of corroded rebar and concrete. It is found that the tendency to decrease the bond strength is closely related to the crack width rather than the corrosion level. Hence, to determine the degradation performance for the bond strength-slip behavior relation, the occurrence of cracks on the concrete surface can be a suitable index.

Study on the Critical Threshold Chloride Content for Steel Corrosion in Concrete with Various Cement Contents (단위시멘트량이 다른 콘크리트 중에서의 철근부식 임계염화물량에 관한 연구)

  • Yang, Seung-Kyu;Kim, Dong-Suck;Um, Tai-Sun;Lee, Jong-Ryul;Kono, Katsuya
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.415-421
    • /
    • 2008
  • Reinforced concrete starts to corrode when the chloride ion concentration which is the sum of included in concrete and penetrated from environments exceeds a certain level of critical chloride concentration. Therefore each country regulates the upper bounds of chloride amount in concrete and the regulations are different for each country due to its circumstances. In this study, the critical threshold chloride content according to unit cement amount is empirically calculated to propose a reasonable regulation method on the chloride amount. As a result, the critical threshold chloride content increases considerably according to cement content and it agrees with the established theories. The present regulations on total chloride amount 0.3 or 0.6 kg chloride ions per $1\;m^3$ of concrete does not reflect the influences of mix design, environmental conditions and etc. So it can be said that it is more reasonable to regulate the critical threshold chloride content by the ratio of chloride amount per unit cement content than by the total chloride content in $1\;m^3$ of concrete.

Cracking Behavior of Reinforced Concrete Structures due th Reinforcing Steel Corrosion (철근부식에 의한 철근콘크리트 구조물의 균열거동)

  • 오병환;김기현;장승엽;강의영;장봉석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.851-863
    • /
    • 2002
  • Corrosion products of reinforcement in concrete induce pressure to the adjacent concrete due to the expansion of steel. This expansion causes tensile stresses around the reinforcing bar and eventually induces cracking through the concrete cover The cracking of concrete cover will adversely affect the safety as well as the service life of concrete structures. The purpose of the this study is to examine the critical corrosion amount which causes the cracking of concrete cover. To this end, a comprehensive experimental and theoretical study has been conducted. Major test variables include concrete strength and cover thickness. The strains at the surface of concrete cover have been measured according to the amount of steel corrosion. The corrosion products which penetrate into the pores and cracks around the steel bar have been considered in the calculation of expansive pressure due to steel corrosion. The present study indicates that the critical amount of corrosion, which causes the initiation of cracking, increases with an increase of compressive strength. A realistic relation between the expansive pressure and average strain of corrosion product layer in the corrosion region has been derived and the representative stiffness of corrosion layer was determined. A concept of pressure-free strain of corrosion product layer was introduced to explain the relation between the expansive pressure and corrosion strain. The proposed theory agrees well with experimental data and may be a good base for the realistic durability design of concrete structures.