• Title/Summary/Keyword: 부산점토

Search Result 87, Processing Time 0.02 seconds

Characterization of Shear Waves in Busan New Port Clay: Estimation of the Coefficients of Shear Wave Velocity (부산 신항 점토의 전단파 특성 연구: 전단파 속도 계수 추정 사례)

  • Lee, Jong-Sub;Kim, Youngseok;Hong, Seungseo;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.503-510
    • /
    • 2013
  • Shear wave velocity is widely used as an parameter for investigating subsurface characteristics and for obtaining the design parameters based on theoretical equations. This study seeks to estimate the coefficient of shear wave velocity in Busan clay via laboratory tests. Eight specimens were extracted at depths of 10, 12, 15, 20, 22, 25, 30, and 31 m. The specimens were subjected to the consolidation test to determine the relationship between effective stress and shear wave velocity. The relationship shows a non-linear trend and is similar to the results of a previous study. The coefficient shows constant coverage and a relationship between ${\alpha}$ and ${\beta}$ is suggested. The results demonstrate that this coefficient could be used as a reference value to determine engineering parameters based on the shear wave velocity.

A Study on Undrained Shear Strength Characteristic of Pusan Clay (부산 점토의 비배수전단강도 특성에 관한 연구)

  • Ryu, Woongryul;Byun, Yoseph;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.43-51
    • /
    • 2010
  • In the downstream areas of the Nakdong river, Pusan clays are commonly found and thickness may reach to maximum of 100m. From geological point of view, Pusan clay are characterized as holocene clays, deposited for approximately 20,000 years ago. Recently, there have been many construction projects based on these soft ground areas. It is needed to know clearly soil properties of the areas for design and safety analysis, especially undrained shear strength of soft clays. However, Pusan clay have not been studied systematically because the clay layers are usually very deep, having high sensitivity characteristic. In this study, undisturbed UD samples obtained from the downstream areas of the Nakdong river were researched using laboratory tests (CthUE, CKcUC, CIUC, UU and UC) and in-situ tests (Field Vane, CPTu). The undrained shear strength characteristics of the samples were depicted using stress-strain relationship.

Strain-rate-dependent Consolidation Characteristics of Busan Clay (부산점토의 변형률 속도 의존적인 압밀특성)

  • Kim Yun-Tae;Jo Sang-Chan;Jo Gi-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.127-135
    • /
    • 2005
  • In order to analyze effects of strain rate on consolidation characteristics of Busan clay, a series of constant rate of strain (CRS) consolidation tests with different strain rate and incremental loading tests (ILT) were performed. From experimental test results on Busan clay, it was found that the preconsolidation pressure was dependent on the corresponding strain rate occurring during consolidation process. Also, consolidation curves normalized with respect to preconsolidation pressure gave a unique stress-strain curve. Coefficient of consolidation and permeability estimated from CRS test had a tendency to converge to a certain value at normally consolidated range regardless of strain rate. An increase in excess pore pressure was observed after the end of loading without change of total stress on the incremental loading test, which phenomenon is called Mandel-Cryer effect. It was also found that rapid generation of excess pore pressure took place due to collapse of soil structure as effective stress approached to preconsolidation pressure.

The Prediction Method of the Small Strain Shear Modulus for Busan Clay Using CPT and DMT (CPT와 DMT를 이용한 부산점토의 최대전단탄성계수 추정방법에 관한 연구)

  • Hong, Sung-Jin;Yoon, Hyung-Ko;Lee, Jong-Sub;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.5-16
    • /
    • 2009
  • The is study is to evaluate the small strain shear modulus ($G_{max}$) of Busan clay using in-situ penetration tests. A series of dilatometer tests (DMT) and piezocone penetration tests (CPTu) are performed at Busan newport and Noksan sites, and hybrid oedometer tests are also carried out on the specimens obtained from both sites. The $G_{max}$ is evaluated from the shear wave velocity ($V_s$) measured by the bender elements installed at the boundary of oedometer cell. By analyzing these data, the relationship of $G_{max}$ and state variables, such as confined stress and void ratio, is developed. The analysis of lab and in-situ test results reveals that the ratio of $G_{max}$ to $q_t$ is inversely proportional to the plasticity index while the ratio of $G_{max}$ to $E_D$ has a linear relationship with ($I/I_D$)$(p_a/{\sigma}'_v)^{0.5}$. Two correlations suggested in this study, based on CPT and DMT results, appear to provide reasonable predictions of the small strain shear modulus.

Evaluation of Compression Index for Natural Clay Using the Compression Characteristic of Reconstituted Clay (재성형점토의 압축특성을 이용한 자연점토의 압축지수 추정)

  • Hong, Sung-Jin;Kim, Dong-Hee;Lee, Moon-Joo;Jie, Hong-Keun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.5-13
    • /
    • 2013
  • The compression index, representing the compressibility of clay, is generally obtained from the consolidation test, or predicted by empirical correlations using soil properties. However, empirical methods have regional limitations, because the compression index is affected not only by soil properties but also by site characteristics, such as deposition conditions and stress history. In this study, a method evaluating the compression index from typical soil properties is suggested using the characteristics of reconstituted clay. By analyzing the consolidation test results of Busan clay, the suggested method is verified, and the analysis of prediction error is carried out. It is shown that the proposed method evaluates the compression index more accurately than empirical methods previously suggested. The prediction errors occur by assumption, and are inversely proportional to $e_{cross}/e_0$, obviously.

Long-term Consolidation Characteristics of Busan Clay considering OC or NC States (과압밀 및 정규압밀영역의 응력상태에 따른 부산점토 장기압밀특성)

  • Kim, Yun-Tae;Jo, Sang-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.110-115
    • /
    • 2011
  • Numerouslong-term consolidation and secondary compression settlements may occur in Busan clay, which is astructured soft clay and consists of a thick clay deposit. As a surcharge load is applied to soils, soils experience different stress paths with depth. Therefore, it is necessary to study the long-term consolidation behavior of Busan clay considering stress conditions such as OC or NC states. In this study, a series of long-term consolidation tests were performed to investigate the consolidation characteristics of Busan clay for 20 days. The undisturbed clay samples were taken from 3 sites located in the Nakdong River estuary. The results showed that the creep rate of the Busan clay gradually decreased with time, which indicated that the secondary compression settlement decreased with time. In addition, the experimental results for 3 samples showed that the ratios were about 0.0363 and 0.051, respectively.

Evaluation of Compressibility for Normally Consolidated South-east Coast Clay Using CPT and DMT (CPT와 DMT를 이용한 남동해안 정규압밀 점토의 압축성 추정)

  • Hong, Sung-Jin;Chae, Young-Ho;Lee, Moon-Joo;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.21-32
    • /
    • 2011
  • A series of in-situ and laboratory tests were performed for the clayey soils of Busan area in order to develop the methods to evaluate the compressibility using CPT and DMT results. The laboratory tests show that the clayey layers of Busan areas are normally consolidated, and their compression indices are turned out to be 0.5~1.3. From the analysis of test results, correlation factors between the cone resistance and constrained modulus (${\alpha}_m$ and ${\alpha}_n$) are observed to decrease with increasing plasticity index, and the correlation factor between the dilatometer modulus and constrained modulus $(R_M)$ increases with $1/I_D$. Based on these relationships, the methods evaluating the constrained modulus from CPT and DMT results are suggested. It is shown that the prediction method by CPT underestimates the constrained modulus of improved ground, whereas the prediction method by DMT is suitable for evaluating the constrained modulus of improved and unimproved ground.

A Study on Geology and Clay Minerals of the Landslide Area in the Munhyun-dong, Nam-gu, Pusan (부산시 남구 문현동 산사태 지역의 지질 및 점토광물에 대한 연구)

  • 황진연;김선경;김춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.113-125
    • /
    • 1999
  • In this study the occurrence and mineralogical characteristics of clay minerals from the Munhyun-dong landslide area in Pusan city were examined by XRD, SEM, and chemical analyses. Several types of clay minerals such as halloysite, vermiculite, mica/vermiculite interstratified mineral, vermiculite/smectite interstratified mineral, kaolinite and illite are found abundantly in the area. The occurrence of clay minerals suggest that they have been formed by weathering of andesite which is the bedrock of the area. It is believed that halloysite was formed in the early stage of weathering, and vermiculite, mica/vermiculite interstratified mineral and mica/vermiculite interstratified mineral were formed in the middle stage, and finally, kaolinite was formed. The clay minerals occurring in the central part of the landsliding area and within the slip surface are dominated by expandable minerals such as halloysite, vermiculite and vermiculite/smectite interstratified mineral. These clay minerals expand by absorbing water and effectively decrease the shear resistance of the rock mass, and therefore, they could be an important factor for the landslide. The analyses of geology and mineralogical characteristics of the area suggest that the landslide was caused by combination of various factors including steep slope, heavy rainfall, abundant joints, alteration of the rocks, and occurrence of expandable clay minerals. The result of this study suggests that the investigation for the prevention of possible landslide must include the examination of clay mineralogy as well as the site geology.

  • PDF

Correlation Between Engineering Properties and Mineralogy of Clay Sediments in the Estuary of the Nakdong River (낙동강 하구지역 점토퇴적물의 광물조성과 토질물성과의 상관관계)

  • Lee Sonkap;Kim Jin-Seop;Um Jeong-Gi;Hwang Jin-Yeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.93-107
    • /
    • 2005
  • The estuary of Nakdong River area including Noksan industrial complex and Busan New Port is composed of thick unconsolidified sediments containing abundant clay, and thus is a potential hazardous area of ground subsidence. We analyzed mineral compositions and geotechnical properties of the clay sediments that sampled from 4 boreholes of the area, and examined vertical variations and their correlations. The results showed correlations between some mineral constituents and geotechnical properties of clay sediments. A positive correlation showed between quartz content and wet unit weight, whereas a negative correlation showed between quartz content and liquid limit. Feldspar content and water content showed a negative correlation, whereas content of clay minerals and liquid limit showed a positive correlation. And also, there is a negative correlation between content of clay minerals and wet unit weight. Correlation equations are obtained from the multiple regression analyses among plastic index, content of clay mineral, smectite and clay fraction.