Parameterization has been one of very important research subjects in several application areas including computer graphics. In the parameterization research, the problem of mapping 3D polygonal model to 2D plane has been studied frequently, but the previous methods often fail to handle complicated shapes of polygonal surfaces effectively as well as entail distortion between the 3D and 2D spaces. Several attempts have been made especially to reduce such distortion, but they often suffer from the problem when an arbitrary rectangular surface region on 3D model is locally parameterized. In this paper, we propose a new local parameterization scheme based on the projection level set method. This technique generates a series of equi-distanced curves on the surface region of interest, which are then used to generate effective local parameterization information. In this paper, we explain the new technique in detail and show its effectiveness by demonstrating experimental results.
본 논문에서 우리는 정규화 된 혼합 노름(norm)을 이용한 다중 채널 영상 복원 알고리즘을 제안한다. 채널 내부와 채널 사이의 결정론적 정보를 이용하는 다중채널 복원 문제를 고려한다. 각 채널에서, LMS(Least Mean Square), LMF(Least Mean Fourth), 평탄 함수가 결합된 함수가 제안되었다. LMS와 LMF 사이의 적절한 분배를 제어하는 혼합 노를 매개변수와 해의 평탄 정도를 정의하는 정규화 매개 변수를 소개하며, 두 매개 변수는 각 채널의 잡음 특성에 따라 매번 반복적으로 갱신된다. 제안된 알고리즘은 각 채널의 잡음분포에 대한 지식이 필요하지 앉고 앞에서 언급된 매개 변수는 부분적으로 복원된 영상에 기반을 두고 조절하게 된다.
Chang, Hyung Joon;Lee, Hyo Sang;Kim, Seong Goo;Park, Ki Soon
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.224-224
/
2017
지구온난화로 인한 기후변화 등으로 안전한 하천구조물을 설계하기 위해서는 신뢰할 수 있는 홍수량 산정이 필요하다. 신뢰할 수 있는 홍수량 산정을 위해서는 정도 높은 과거 수문자료가 필요하나 국내의 많은 중소 규모유역이 미계측 유역 또는 과거 수문자료 부족으로 신뢰 할 수 있는 홍수량 산정이 어려운 실정이다. 본 연구에서는 미계측 유역의 홍수량 산정을 위하여 확률분포모형(PDM)의 매개변수 지역화를 수행하였다. 매개변수 지역화 연구를 수행하기 위하여, 금강 25개 유역을 대상으로 유역별 9~18개의 단기홍수수문사상을 선정하였다. 선정된 단기홍수수문사상을 확률분포모형에 적용하기위하여, MCAT (Monte Carlo Analysis Toolbox)을 활용하여 검정 및 검증을 수행하였으며, 목적함수는 수문곡선 모든 구간을 반영하는 NSE (Nash Sutcliffe Efficiency)와 고유량 부분을 반영하는 RMSE (Root Mean Squared Error) - FH를 적용하였다. 각각의 목적함수에 대하여 검정 모형 매개변수와 유역 특성인자의 다중 선형회귀식을 강우유출모형 매개변수 지역화 모형으로 제시하였다. 매개변수 지역화 결과의 평가를 위하여 청주 유역을 미계측 유역으로 가정하였다. 청주 유역에 대하여 지역화 매개변수를 적용한 결과, 17개의 사상 중 11개의 사상에서 NSE 목적함수 값이 0.5이상으로 전체적인 수문곡선의 경향성을 보였으며, 첨두 홍수량은 17개 사상 중 11개 사상에서 관측 첨두 홍수량 값의 20%이내를 제시하여 적합한 결과를 제시하였다. 또한 금강 25개 유역에 Jackknife 방법으로 검정 결과 관측 첨두 홍수량 값 20%이내의 성능을 보이는 사상이 56%를 포함하고 있어 의미있는 지역화 모형을 제시하였다고 판단된다. 본 연구에서 제시한 매개변수 지역화 방법은 미계측 유역의 유출모의에 활용될 수 있음을 확인하였다.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.17-20
/
2001
본 논문에서는 분절 특징 HMM(SFHMM)의 매개변수를 줄이는 방법을 제안한다 SFHMM이 HMM보다 우수한 성능을 보이더라도, SFHMM의 매개 변수 수는 HMM보다 많기 때문에 매개 변수 수를 줄이는 방법에 대한 연구가 필요하다. 일반적으로 궤적(trajectory)은 경향(trend) 정보와 위치(location) 정보로 분리될 수 있다. 경향은 분절 특징의 변이를 나타내며, SFHMM 변수의 많은 부분을 담당하기 때문에, 경향 정보를 공유할 수 있다면 SFHMM의 매개 변수 수는 감소될 수 있을 것이다. 제안된 방법은 궤적의 경향 정보를 양자화(quantization)에 의하여 공유한다. 제안된 방법의 성능을 살펴보기 위하여 영어 데이터베이스인 TIMIT 자료를 사용하여 실험하였다. 실험 결과 제안된 방법의 성능은 기존 연구와 거의 유사하나, 궤적의 다양한 정보를 이용한다면 궤적 정보의 공유에 의하여 매개 변수를 줄일 수 있을 것으로 보인다.
Choi, Hyun Gu;Jeong, Seok Il;Park, Jin Yong;Kwon, E Jae;Lee, Jun Yeol
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.387-387
/
2022
기존 홍수기시 댐 운영은 예측 강우와 실시간 관측 강우를 이용하여 댐 운영 모형을 수행하며, 예측 결과에 따라 의사결정 및 댐 운영을 실시하게 된다. 하지만 이 과정에서 반복적인 분석이 필요하며, 댐 운영 모형 수행자의 경험에 따라 예측 결과가 달라져서 반복작업에 대한 자동화, 모형 수행자에 따라 달라지지 않는 예측 결과의 일반화가 필요한 상황이다. 이에 댐 운영 모형에 AI 기법을 적용하여, 다양한 강우 상황에 따른 자동 예측 및 모형 결과의 일반화를 구현하고자 하였다. 이를 위해 수자원 분야에 적용된 국내외 129개 연구논문에서 사용된 딥러닝 기법의 활용성을 분석하였으며, 다양한 수자원 분야 AI 적용 사례 중에서 댐 운영 예측 모형에 적용한 사례는 없었지만 유사한 분야로는 장기 저수지 운영 예측과 댐 상·하류 수위, 유량 예측이 있었다. 수자원의 시계열 자료 활용을 위해서는 Long-Short Term Memory(LSTM) 기법의 적용 활용성이 높은 것으로 분석되었다. 댐 운영 모형에서 AI 적용은 2개 분야에서 진행하였다. 기존 강우관측소의 관측 강우를 활용하여 강우의 패턴분석을 수행하는 과정과, 강우에서 댐 유입량 산정시 매개변수 최적화 분야에 적용하였다. 강우 패턴분석에서는 유사한 표본끼리 묶음을 생성하는 K-means 클러스터링 알고리즘과 시계열 데이터의 유사도 분석 방법인 Dynamic Time Warping을 결합하여 적용하였다. 강우 패턴분석을 통해서 지점별로 월별, 태풍 및 장마기간에 가장 많이 관측되었던 강우 패턴을 제시하며, 이를 모형에서 직접적으로 활용할 수 있도록 구성하였다. 강우에서 댐 유입량을 산정시 활용되는 매개변수 최적화를 위해서는 3층의 Multi-Layer LSTM 기법과 경사하강법을 적용하였다. 매개변수 최적화에 적용되는 매개변수는 중권역별 8개이며, 매개변수 최적화 과정을 통해 산정되는 결과물은 실측값과 오차가 제일 적은 유량(유입량)이 된다. 댐 운영 모형에 AI 기법을 적용한 결과 기존 반복작업에 대한 자동화는 이뤘으며, 댐 운영에 따른 상·하류 제약사항 표출 기능을 추가하여 의사결정에 소요되는 시간도 많이 줄일 수 있었다. 하지만, 매개변수 최적화 부분에서 기존 댐운영 모형에 적용되어 있는 고전적인 매개변수 추정기법보다 추정시간이 오래 소요되며, 매개변수 추정결과의 일반화가 이뤄지지 않아 이 부분에 대한 추가적인 연구가 필요하다.
In video compression standards such as MPEG and H.263. rate control is one of the key components for good coding performance. This paper presents a simple adaptive rate control scheme using a piecewise linear approximation model. While conventional buffer control approach is performed by adjusting the quantization parameter linearly according to the buffer fullness. the proposed approach uses a piecewise linear approximation model derived from logarithmic relation between the quantization parameter and bitrate in data compression. In addition. a forward analyzer performed in the spatial domain is used to improve image quality. Simulation results demonstrate that the proposed method provides better performance than the conventional one and reduces the fluctuation of the PSNR per frame while maintaining the quality of the reconstructed frames at a relatively stable level.
The Journal of Korean Institute of Communications and Information Sciences
/
v.29
no.2C
/
pp.272-282
/
2004
This paper introduces a regularized mixed norm multi-channel image restoration algorithm using both within-and between- channel deterministic information. For each channel a functional which combines the least mean squares (LMS), the least mean fourth (LMF), and a smoothing functional is proposed. We introduce a mixed norm parameter that controls the relative contribution between the LMS and the LMF, and a regularization parameter defining the degree of smoothness of the solution, where both parameters are updated at each iteration according to the noise characteristics of each channel. The novelty of the proposed algorithm is that no knowledge of the noise distribution for each channel is required and that the parameters mentioned above are adjusted based on the partially restored image.
Kim, Jong-Seon;Yeom, Dong-Hae;Joo, Young-Hoon;Park, Jin-Bae
Proceedings of the KIEE Conference
/
2011.07a
/
pp.1890-1891
/
2011
본 논문은 변형 가능한 타원형의 포메이션을 유지하기 위한 군집 로봇의 행동 동기화 알고리즘을 제안한다. 알고리즘은 매개 변수 함수를 이용한 타원형 포메이션에서의 포텐셜 필드 생성 부분과 개별 로봇이 타원으로 이동하기 위한 인력 및 충돌 회피를 위한 척력 함수 부분으로 나누어진다. 제안한 알고리즘은 시뮬레이션을 통해 군집 로봇의 행동을 제어하는데 효과적임을 입증하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.157-160
/
1998
본 논문에서는 동영상으로부터 에지 정보와 형판 변형을 통해 얼굴의 추출하고 그 특징을 기반으로 하는 추적 기법을 제안한다. 본 논문에서 제안하는 추적기법은 추출된 특징에 기반을 추적 지법으로 초기에 모자익 영상을 이용하여 얼굴 부분을 찾고 찾아진 얼굴 부분에 에지 연산자를 적용하여 에지를 추출한다. 에지 영상이 얻어지면 에지 영상에서 영역의 크기와 모양, 그리고 관계 검증을 통해 대략적인 눈 영역을 추출한다. 눈 영역이 찾아지면 이를 바탕으로 입 영역에 대한 후보 영역에 대하여 이진화를 수행하고 히스토그램 프로젝션을 통해 대략적인 입 영역을 추출한다. 추출된 눈 영역과 입 영역에 각각의 형판을 사용해 형판 변형을 하고 초기 매개변수를 추출한다. 추출된 매개변수는 다음 프레임에서 형판의 초기 값으로 사용된다. 그리고 나서 형판에 대하여 변형(deformation) 과정을 수행한다. 이 과정을 반복함으로써 추적 과정을 수행한다.
In this paper, we propose the reduction method of the number of parameters in the segmental-feature HMM using trend quantization method. The proposed method shares the trend information of the polynomial trajectories by quantization. The trajectory is obtained by the sequence of feature vectors of speech signals and can be divided by trend and location information. The trend indicates the variation of consequent frame features, while the location points to the positional difference of the trajectories. Since the trend occupies the large portion of SFHMM, if the trend is shared, the number of parameters maybe decreases. To exploit the proposed system the experiments are performed on TIMIT corpus. The experimental results show that the performance of the proposed system is roughly similar to that of previous system. Therefore, the proposed system can be considered one of parameter reduction method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.