• 제목/요약/키워드: 부분적으로 가려진 물체

Search Result 17, Processing Time 0.023 seconds

A panorama algorithm for close foreground objects (근거리 전경 물체를 위한 파노라마 알고리듬)

  • Lee, Soon-Young;Sim, Jae-Young;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.420-421
    • /
    • 2010
  • 본 논문에서는 멀티뷰 환경에서 촬영된 영상을 이용하여 카메라와 가까이 위치한 전경 물체를 중심으로 뷰가 확장된 영상을 생성하는 파노라마 알고리듬을 제안하였다. 먼저 전경 물체는 사용자가 선택한 중심 물체를 기준으로 하여 평행 이동 관계로 전경 파노라마를 생성 한다. 배경은 특징점 기반의 파노라마 기법을 이용하여 초기 결과를 얻고, 멀티뷰 영상의 시차에 기인한 가려진(occluded) 영역을 제한 영역으로 설정한 후 최적화 과정을 이용하여 시각적으로 자연스러운 배경 파노라마를 얻는다. 마지막으로 배경 파노라마와 전경 파노라마와 크기를 동일하게 하고 배경 파노라마와 전경 파노라마를 합성하여 결과 파노라마를 구성한다. 모의 실험결과 제안 알고리듬은 원본 영상의 전경 물체들을 모두 포함하면서도 배경 부분은 시각적으로 자연스러운 파노라마 결과를 도출함을 확인하였다.

  • PDF

Learning Rules for Partially Occluded Object Recognition (부분적으로 가려진 물체의 인식 룰의 습득)

  • 정재영;김문현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.954-962
    • /
    • 1990
  • Experties of recognizing an object despite of every possible occlusions among objects is difficult to be provided directly to a system. In this paper, we propose a method for inferring inherent shape-characteirstics of an object from training views provided. The method learns rules incrementally by alternating the rule induction process from limited number of training views and the rule verification process from the following taining views. The learned rules are represented using logical expressions to enhance the readability. Thr proposed method is tested by simulating occlusions on 2-dimensional objects to examine the learning process and to show improvement of recognition rate. Thr result shows that it can be applied to a practical system for 3-dimensional object recognition.

  • PDF

Segment Based Recognition of 2-D Partially Occluded Objects (Segment에 근거한 부분적으로 가려진 2차원 물체인식)

  • 김성로;황순자;정재영;김문현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.119-128
    • /
    • 1994
  • In this paper we propose a new method for the recognition of 2-D partially occluded objects. The border of the object is transformed to a curve in arc length-accumulated interior angle plane. The transformed curve of an image is partitioned so that each segment is bounded by the concave interior angles. In order to tolerate shape distortion due to the polygonal approximation of the boundary of the object a group of feature points of the input image are matched with those of model views. The estimation method for positions and orientations of the identified objects objects is presented.

  • PDF

A study on vision system based on Generalized Hough Transform 2-D object recognition (Generalized Hough Transform을 이용한 이차원 물체인식 비젼 시스템 구현에 대한 연구)

  • Koo, Bon-Cheol;Park, Jin-Soo;Chien Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.67-78
    • /
    • 1996
  • The purpose of this paper is object recognition even in the presence of occlusion by using generalized Hough transform(GHT). The GHT can be considered as a kind of model based object recognition algorithm and is executed in the following two stages. The first stage is to store the information of the model in the form of R-table (Reference table). The next stage is to identify the existence of the objects in the image by using the R-table. The improved GHT method is proposed for the practical vision system. First, in constructing the R-table, we extracted the partial arc from the portion of the whole object boundary, and this partial arc can be used for constructing the R-table. Also, clustering algorithm is employed for compensating an error arised by digitizing an object image. Second, an efficient method is introduced to avoid Ballard's use of 4-D array which is necessary for estimating position, orientation and scale change of an object. Only 2-D array is enough for recognizing an object. Especially, scale token method is introduced for calculating the scale change which is easily affected by camera zoom. The results of our test show that the improved hierarchical GHT method operates stably in the realistic vision situation, even in the case of object occlusion.

  • PDF

Implementation of an Effective Human Head Tracking System Using the Ellipse Modeling and Color Information (타원 모델링과 칼라정보를 이용한 효율적인 머리 추적 시스템 구현)

  • Park, Dong-Sun;Yoon, Sook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.684-691
    • /
    • 2001
  • In this paper, we design and implement a system which recognizes and tracks a human head on a sequence of images. In this paper, the color of the skin and ellipse modeling is used as feature vectors to recognize the human head. And the modified time-varying edge detection method and the vertical projection method is used to acquire regions of the motion from images with very complex backgrounds. To select the head from the acquired candidate regions, the process for thresholding on the basis of the I-component of YIQ color information and mapping with ellipse modeling is used. The designed system shows an excellent performance in the cases of the rotated heads, occluded heads, and tilted heads as well as in the case of the normal up-right heads. And in this paper, the combinational technique of motion-based tracking and recognition-based tracking is used to track the human head exactly even though the human head moves fast.

  • PDF

Progressive occupancy network for 3D reconstruction (3차원 형상 복원을 위한 점진적 점유 예측 네트워크)

  • Kim, Yonggyu;Kim, Duksu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.65-74
    • /
    • 2021
  • 3D reconstruction means that reconstructing the 3D shape of the object in an image and a video. We proposed a progressive occupancy network architecture that can recover not only the overall shape of the object but also the local details. Unlike the original occupancy network, which uses a feature vector embedding information of the whole image, we extract and utilize the different levels of image features depending on the receptive field size. We also propose a novel network architecture that applies the image features sequentially to the decoder blocks in the decoder and improves the quality of the reconstructed 3D shape progressively. In addition, we design a novel decoder block structure that combines the different levels of image features properly and uses them for updating the input point feature. We trained our progressive occupancy network with ShapeNet. We compare its representation power with two prior methods, including prior occupancy network(ONet) and the recent work(DISN) that used different levels of image features like ours. From the perspective of evaluation metrics, our network shows better performance than ONet for all the metrics, and it achieved a little better or a compatible score with DISN. For visualization results, we found that our method successfully reconstructs the local details that ONet misses. Also, compare with DISN that fails to reconstruct the thin parts or occluded parts of the object, our progressive occupancy network successfully catches the parts. These results validate the usefulness of the proposed network architecture.

Robot Knowledge Framework of a Mobile Robot for Object Recognition and Navigation (이동 로봇의 물체 인식과 주행을 위한 로봇 지식 체계)

  • Lim, Gi-Hyun;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.6
    • /
    • pp.19-29
    • /
    • 2007
  • This paper introduces a robot knowledge framework which is represented with multiple classes, levels and layers to implement robot intelligence at real environment for mobile robot. Our root knowledge framework consists of four classes of knowledge (KClass), axioms, rules, a hierarchy of three knowledge levels (KLevel) and three ontology layers (OLayer). Four KClasses including perception, model, activity and context class. One type of rules are used in a way of unidirectional reasoning. And, the other types of rules are used in a way of bi-directional reasoning. The robot knowledge framework enable a robot to integrate robot knowledge from levels of its own sensor data and primitive behaviors to levels of symbolic data and contextual information regardless of class of knowledge. With the integrated knowledge, a robot can have any queries not only through unidirectional reasoning between two adjacent layers but also through bidirectional reasoning among several layers even with uncertain and partial information. To verify our robot knowledge framework, several experiments are successfully performed for object recognition and navigation.