• Title/Summary/Keyword: 부분오차

Search Result 706, Processing Time 0.029 seconds

An Energy-Balancing Technique using Spatial Autocorrelation for Wireless Sensor Networks (공간적 자기상관성을 이용한 무선 센서 네트워크 에너지 균등화 기법)

  • Jeong, Hyo-nam;Hwang, Jun
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.33-39
    • /
    • 2016
  • With recent advances in sensor technology, CMOS-based semiconductor devices and networking protocol, the areas for application of wireless sensor networks greatly expanded and diversified. Such diversification of uses for wireless sensor networks creates a multitude of beneficial possibilities for several industries. In the application of wireless sensor networks for monitoring systems' data transmission process from the sensor node to the sink node, transmission through multi-hop paths have been used. Also mobile sink techniques have been applied. However, high energy costs, unbalanced energy consumption of nodes and time gaps between the measured data values and the actual value have created a need for advancement. Therefore, this thesis proposes a new model which alleviates these problems. To reduce the communication costs due to frequent data exchange, a State Prediction Model has been developed to predict the situation of the peripheral node using a geographic autocorrelation of sensor nodes constituting the wireless sensor networks. Also, a Risk Analysis Model has developed to quickly alert the monitoring system of any fatal abnormalities when they occur. Simulation results have shown, in the case of applying the State Prediction Model, errors were smaller than otherwise. When the Risk Analysis Model is applied, the data transfer latency was reduced. The results of this study are expected to be utilized in any efficient communication method for wireless sensor network monitoring systems where all nodes are able to identify their geographic location.

A DNA Sequence Alignment Algorithm Using Quality Information and a Fuzzy Inference Method (품질 정보와 퍼지 추론 기법을 이용한 DNA 염기 서열 배치 알고리즘)

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.55-68
    • /
    • 2007
  • DNA sequence alignment algorithms in computational molecular biology have been improved by diverse methods. In this paper, we proposed a DNA sequence alignment algorithm utilizing quality information and a fuzzy inference method utilizing characteristics of DNA sequence fragments and a fuzzy logic system in order to improve conventional DNA sequence alignment methods using DNA sequence quality information. In conventional algorithms, DNA sequence alignment scores were calculated by the global sequence alignment algorithm proposed by Needleman-Wunsch applying quality information of each DNA fragment. However, there may be errors in the process for calculating DNA sequence alignment scores in case of low quality of DNA fragment tips, because overall DNA sequence quality information are used. In the proposed method, exact DNA sequence alignment can be achieved in spite of low quality of DNA fragment tips by improvement of conventional algorithms using quality information. And also, mapping score parameters used to calculate DNA sequence alignment scores, are dynamically adjusted by the fuzzy logic system utilizing lengths of DNA fragments and frequencies of low quality DNA bases in the fragments. From the experiments by applying real genome data of NCBI (National Center for Biotechnology Information), we could see that the proposed method was more efficient than conventional algorithms using quality information in DNA sequence alignment.

  • PDF

Extraction of Water Depth in Coastal Area Using EO-1 Hyperion Imagery (EO-1 Hyperion 영상을 이용한 연안해역의 수심 추출)

  • Seo, Dong-Ju;Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.716-723
    • /
    • 2008
  • With rapid development of science and technology and recent widening of mankind's range of activities, development of coastal waters and the environment have emerged as global issues. In relation to this, to allow more extensive analyses, the use of satellite images has been on the increase. This study aims at utilizing hyperspectral satellite images in determining the depth of coastal waters more efficiently. For this purpose, a partial image of the research subject was first extracted from an EO-1 Hyperion satellite image, and atmospheric and geometric corrections were made. Minimum noise fraction (MNF) transformation was then performed to compress the bands, and the band most suitable for analyzing the characteristics of the water body was selected. Within the chosen band, the diffuse attenuation coefficient Kd was determined. By deciding the end-member of pixels with pure spectral properties and conducting mapping based on the linear spectral unmixing method, the depth of water at the coastal area in question was ultimately determined. The research findings showed the calculated depth of water differed by an average of 1.2 m from that given on the digital sea map; the errors grew larger when the water to be measured was deeper. If accuracy in atmospheric correction, end-member determination, and Kd calculation is enhanced in the future, it will likely be possible to determine water depths more economically and efficiently.

Modified Thermal-divergence Model for a High-power Laser Diode (고출력 레이저 다이오드 광원의 열저항 개선을 위한 하부층 두께 의존성 수정 모델)

  • Yong, Hyeon Joong;Baek, Young Jae;Yu, Dong Il;O, Beom Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.5
    • /
    • pp.193-196
    • /
    • 2019
  • The design and control of thermal flow is important for the operation of high-power laser diodes (LDs). It is necessary to analyze and improve the thermal bottleneck near the active layer of an LD. As the error in prediction of the thermal resistance of an LD is large, typically due to the hyperbolic increase and saturation to linear increase of the thermal resistance as a function of thickness, it is helpful to use a simple, modified divergence model for the improvement and optimization of thermal resistance. The characteristics of LDs are described quite well, in that the values for simulated thermal resistance curves and the thermal cross section followed are almost the same as the values from the model function. Also, the thermal-cross-section curve obtained by differentiating the thermal resistance is good for identifying thermal bottlenecks intuitively, and is also fitted quite well by the model proposed for both a typical LD structure and an improved LD with thin capping and high thermal conductivity.

A Study on Optimal Parameter Selection for Health Monitoring of Turboprop Engine (PT6A-62) (터보프롭엔진(PT6A-62)의 성능저하 진단을 위한 최적 계측 변수 선정에 관한 연구)

  • 공창덕;기자영;장현수;오성환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.87-97
    • /
    • 2000
  • A steady state performance simulation and diagnostics program for the turboprop engine (PT6A-62), which is the power plant of the first developed military basic trainer KT-1 in Republic of Korea, was developed. The developed steady state performance analysis program was evaluated with the performance data provided by the engine manufacturer and with analysis results of GASTURB program, which is well known for the performance simulation of gas turbines. Performance parameters were discussed to evaluate validity of the developed program at various cases such as altitude, flight velocity and part load variation. GPA(Gas Pass Analysis) allows engine performance deterioration to be identified at the module level in terms of reduction in component efficiencies and changes in mass flow. In order to find optimal instrument set to detect the physical faults such as fouling, erosion and corrosion, a gas path analysis approach is utilized. This study was performed in two cases for selection of optimal measurement parameters. One case was considered with the effect of instrument number by changing independent parameter number. The other case was performed with selection of independent parameter set. According to the analysis results, the optimal measurement parameters selected were eight dependent variables such as shaft horsepower, fuel flow rate, compressor exit pressure and temperature, compressor turbine inlet pressure and temperature and power turbine inlet pressure and temperature.

  • PDF

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly (유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석)

  • Lee, Jae Hak;Song, Jun-Yeob;Kim, Seung Man;Kim, Yong Jin;Park, Ah-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.31-43
    • /
    • 2019
  • In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

A Study on the Length of DMZ and MDL (비무장지대 및 군사분계선의 길이에 관한 연구)

  • KIM, Chang-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2019
  • This study is to measure the length of the Demilitarized Zone and the Military Demarcation Line(MDL) on the Korean Peninsular. For this purpose, maps of the Armistice Agreement Volume II were used. These maps are nine sheets. In order to extract the MDL shown on the map, coordinates were assigned to the scanned image maps using the georeferencing module of ArcGIS based on the sheet line coordinates. The accuracy of the extracted vectors was checked by overlaying them on the maps of the Armistice Agreement Volume II. And I tried to validate these vectors through comparative analysis with vectors extracted from Kim(2007). Vectors extracted from Kim(2007) had errors in the curvilinear parts of the MDL, but the vectors extracted from this study exactly matched the MDL in the Armistice Agreement Volume II. The measured length is 239.42km(148.77miles). This means that the expression '155mile MDL' or '248km DMZ' in papers, reports or mass media has so far been inappropriate. I think this study will be able to provide information on the exact length of the DMZ in studies related with DMZ or in policy decisions by the national and local government. However, it is deemed necessary to verify this result by national organizations such as the NGII(National Geographic Information Institute). After these verification procedures, I hope that the national government will inform the people of the exact length of DMZ and MDL.

Accuracy Analysis of Low-cost UAV Photogrammetry for Corridor Mapping (선형 대상지에 대한 저가의 무인항공기 사진측량 정확도 평가)

  • Oh, Jae Hong;Jang, Yeong Jae;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.565-572
    • /
    • 2018
  • Recently, UAVs (Unmanned Aerial Vehicles) or drones have gained popularity for the engineering surveying and mapping because they enable the rapid data acquisition and processing as well as their operation cost is low. The applicable fields become much wider including the topographic monitoring, agriculture, and forestry. It is reported that the high geospatial accuracy is achievable with the drone photogrammetry for many applications. However most studies reported the best achievable mapping results using well-distributed ground control points though some studies investigated the impact of control points on the accuracy. In this study, we focused on the drone mapping of corridors such as roads and pipelines. The distribution and the number of control points along the corridor were diversified for the accuracy assessment. In addition, the effects of the camera self-calibration and the number of the image strips were also studied. The experimental results showed that the biased distribution of ground control points has more negative impact on the accuracy compared to the density of points. The prior camera calibration was favored than the on-the-fly self-calibration that may produce poor positional accuracy for the case of less or biased control points. In addition, increasing the number of strips along the corridor was not helpful to increase the positional accuracy.

Uncertainty Analysis of Stage-Discharge Curve Using Bayesian and Bootstrap Methods (Bayesian과 Bootstrap 방법을 이용한 수위-유량 관계곡선의 불확실성 분석)

  • Lim, Jonghun;Kwon, Hyungsoo;Joo, Hongjun;Wang, Won-joon;Lee, Jongso;You, Younghoon;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • The objective of this study is to reduce the uncertainty of the river discharge estimation method using the stage-discharge relation curve. It is necessary to consider the quantitative and accurate estimation method because the river discharge data is essential data for hydrological interpretation and water resource management. For this purpose, the parameters estimated by Bayesian and Bootstrap methods are compared with the ones obtained by stage-discharge relation curve. In addition, the Bayesian and Bootstrap methods are applied to assess uncertainty and then those are compared with the confidence intervals of the results from standard error method which has t-distribution. From the results of this study, The estimated value of the regression analysis developed through this study is less than 1 ~ 5%. Also It is confirmed that there are some areas where the applicability is better than the existing one according to the water level at each point. Therefore, if we use more suitable method according to the river characteristics, we could obtain more reliable discharge with less uncertainty.

Analysis of Flow Velocity Change in Blade Installed Shroud System for Tidal Current Generation (블레이드가 설치된 조류발전용 쉬라우드 시스템 내 유속 변화 분석)

  • Lee, Uk Jae;Han, Seok Jong;Jeong, Shin Taek;Lee, Sang Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • Flow velocity changes in the shroud system for tidal current power generation due to experimental flow velocities and blade geometry changes were analyzed by hydraulic experiment and numerical simulation. Through the hydraulic experiment, flow velocities at inlet of shroud system and RPM according to blade geometry were measured, and numerical simulation was used to analyze flow velocity changes in shroud. When the experimental flow velocity was increased by about 28% and the shape of the airfoil was applied, the measured flow velocity at the shroud inlet tended to increase by up to about 56%. On the other hand, when airfoil-shaped blades were installed, the flow velocity at the inlet tended to increase by up to 14% compared to conventional blades, and RPM was also the highest at the same conditions. The hydraulic experiment and numerical simulation results showed an error of about 13%, and the trends of the flow velocity changes in each result are similar. Numerical simulation of the flow velocity changes in the shroud showed that the flow velocity tended to increase 1.7 times at the front of the blade compared to the inlet. The results of the flow velocity change analysis in the shroud system obtained from this study will provide the basic data necessary for the development of efficient shroud system for tidal current power generation.