• Title/Summary/Keyword: 부마

Search Result 39, Processing Time 0.025 seconds

A Study of the Influence of Negative Skin Friction on Single Piles from Consolidation Analyses (압밀해석을 통한 부마찰이 작용하는 단독말뚝의 거동분석)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.29-36
    • /
    • 2009
  • A series of two-dimensional (2D) finite element analyses have been performed to study the behaviour of single piles in consolidating ground. The analysis was conducted based on coupled analyses by considering changes of pore water pressure in the clay. In the analyses the soil slippage at the pile and the soil interface has been included. The method widely used in practice somewhat overestimates dragload by about 25% compared to the rigorous numerical analysis since partial mobilization of skin friction near neutral plane and reductions in the vertical soil stress is not incorporated. When soil slip develops at most of the pile length at the pile-soil interface during consolidation, further increases in dragload is not significant. Application of coating on the pile surface can reduce dragload and pile settlement substantially, but under an axial load on the pile head very large pile settlement can be developed unless pile tip is located to a stiff bearing layer.

  • PDF

The Truth about October Buma Uprising and Historical Reflection: Comparative Analysis of the Busan Uprising and Masan Uprising (10월 부마항쟁의 진실과 역사적 성찰: 10·16 부산항쟁과 10·18 마산항쟁의 비교분석)

  • Chung, Joo-Shin
    • Korea and Global Affairs
    • /
    • v.2 no.1
    • /
    • pp.5-44
    • /
    • 2018
  • The Buma Uprising, which took place in Busan and Masan from 16 to 20 October 1979, was a challenge against the contradictions of the Yushin Regime. Only after 6 days from the insurrection, the 10 26 Accident transpired, in which the then president Park Chung-hee was assassinated, and the Buma Uprising, which acted as the fuse to the shooting, remained as an 'incomplete uprising'. To commensurate with the subject of the paper 'The Truth about Buma Uprising and Historical Reflection', the purpose of this study is to explore how the uprising began, unfolded, and oppressed by comparing it with Busan Uprising and Masan Uprising. It also focuses to discuss, in detail, the effect of the demonstration by college students and the general public and suppression by the forces of the police and military on President Park and his government. This year, we celebrate the 39th anniversary of Buma Uprising, and with all the issues of discovering the truth, restoration of reputation and more, there are decisions and resolves to make including amendment of the legal system. However, there are certain groups of people who act as they led the uprising and mislead and exploit the facts of the events through illegitimate records and testimony, making it impossible to determine the truth. Discovering the truth will require acquisition of objective materials, testimony of those involved in the event and field research as well as imposition of legal and social punishment on those who distorted the truth about the event.

Design of Pile Foundations Considering Negative Skin Friction (부마찰력을 고려한 말뚝기초 설계)

  • Kim Ju-Hyong;Kwon Oh-Sung;Kim Myoug-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.65-74
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral planes and magnitudes of the maximum axial forces on the piles. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the pile penetration depth into the bearing stratum were proposed to improve the pile capacities.

The Influence of Reduction of Vertical Stress on the Behaviour of Piles Subjected to Negative Skin Friction (수직응력의 감소가 부마찰이 작용하는 말뚝의 거동에 미치는 영향)

  • Lee, Cheol-Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.33-39
    • /
    • 2009
  • Vertical soil stress near a pile subjected to negative skin friction (NSF) may be reduced due to shear transfer at the pile-soil interface. A three-dimensional finite difference analysis has been performed to clarify the influence of vertical and horizontal stress reductions on the pile behavour. In addition, a simple equation has been proposed to estimate vertical stress reduction of the soil near the pile. The vertical and horizontal stresses are reduced by substantial amount compared to corresponding stress components at the Greenfield condition. The horizontal extent of vertical stress reduction of the soil near the pile is rather limited to about up to 4-8 D, where D is the pile diameter. The findings from the current research indicate that widely used $\beta$-method may result in over-estimation of dragload (compressive force on piles due to NSF) and hence stress reduction needs to be incorporated in the original equation.

A Study on the Negative Skin Friction based on Measurements from Existing Works Analysed by 3D Finite Element Analyses (기발표 실측치 분석을 기반으로 한 3차원 유한요소해석 수행을 통한 부마찰에 관한 연구)

  • Jeon, Sang Joon;Jeon, Young Jin;Jeon, Seung Chan;Lee, Cheol Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.8
    • /
    • pp.15-27
    • /
    • 2020
  • In the current paper, a series of advanced 3D finite element analyses have been performed on existing pieces of work of negative skin friction from a geotechnical centrifuge test and full-scale field measurements. From these analyses, key features of pile behaviour under the influence of negative skin friction which, previously, were not fully understood in existing studies, have been meticulously discussed. As such, it has been possible to successfully address several numerical modelling issues such as negative skin friction induced pile settlements and group effects (the shielding effect), the effect of sacrificial piles in groups and the interaction between the pile head and the cap, the effect of interface elements at the pile-soil interface and the time-dependent pile behaviour. During a geotechnical centrifuge test, substantial amounts of negative skin frictions were mobilised when centrifugal acceleration increased from 1g to a certain g-level due to an increase in the self-weight of soil. The behaviour of piles inside a group were heavily affected by the sacrificial piles and the connectivity between the pile head and the pile cap. In particular, as negative skin friction has time dependent qualities associated with consolidation, it was logical to perform coupled analyses when analysing piles in consolidating grounds. From the current work, several insufficiencies of previous researches have been addressed, and the engineering pile behaviour subjected to negative skin friction has been clarified.

A Study of Governing Factors on the Engineering Behaviour of a Single Pile in Consolidating Ground (압밀이 진행중인 지반에 설치된 말뚝의 공학적 거동을 지배하는 주요인자들에 대한 연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.5-16
    • /
    • 2017
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of a single pile in consolidating ground from coupled consolidation analyses. A single pile with typical minimum and maximum ranges of fill height and clay stiffness has been modelled. The computed results demonstrate that the higher the height of the fill above the clay surface and the smaller the stiffness of the clay, the higher the dragloads and the negative skin friction-induced pile settlements. It has been found that the development of dragloads and pile settlement is more governed by the stiffness of the clay rather than the height of the fill. Positive shaft resistance is mobilised only after the average degree of consolidation is larger than 50%. Although the pile is installed when the degree of consolidation is 50% or more, relatively large negative skin friction can nevertheless develop on the pile. On the other hand, when a load is applied on the pile experiencing an increase in the negative skin friction with time during consolidation, the pile undergoes a large increase in the final settlement of up to 95% compared to that of a pile without axial load on the pile head. The allowable pile capacity when there is negative skin friction on the pile is reduced by about 4-11% compared to a pile without negative skin friction.

Analysis of the Negative Skin Friction Acting on a Model Pile (모형말뚝에 작용하는 부마찰력 거동 해석)

  • Lee, Song;Lee, Kyu-Hwan;Yi, Chang-Tok
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.81-93
    • /
    • 1999
  • This paper investigated the negative skin friction acting on the model piles driven in the cylindrical chamber filled with remolded marine clay. In model tests, three load cells were installed on the model piles consisting of three parts to measure the negative skin friction forces independently. Pore pressures and ground movements were monitored throughout the period of investigation. Finite element analysis was used to simulate the behavior of a model pile. This paper describes the comparison of the behavior of negative skin friction on the single model pile with a numerical analysis by CRISP.

  • PDF

A Case Study on the Stability Evaluation of Piles for Negative Skin Eviction by the LRFD Approach (LRFD설계법에 의한 부마찰력이 작용하는 말뚝의 안정성 평가 사례 연구)

  • Cho Chun-Whan;Kim Woong-Kyu;Lee Woo-Chel
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.123-131
    • /
    • 2005
  • Recently, construction activities in reclaimed onshore areas increase in our country In this case, the stability evaluation of the piles for negative skin friction is an important factor for the design of pile foundation in soft grounds. Nevertheless, the design of piles for negative skin friction (or downdrag forces) is probably poorly understood by many geotechnical engineers. It is mainly because only the bearing capacity aspect is taken into account for the downdrag evaluation of piles in most of design specifications. However, the problems fur negative skin friction of piles are mostly related with settlement rather than bearing capacity Meanwhile, LRFD (Load Resistance Factor Design) approach considers both ultimate limit state in terms of bearing capacity and serviceability limit state in terms of settlements. This paper proposes LRFD approach for the downdrag evaluation of piles and compares this approach to traditional design approach. And also a case history is analyzed. Through the analysis some suggestions to solve the problems for the design of piles for negative skin friction are suggested.

A Study on the Behaviour of Single Piles and Pile Groups in Consolidating Ground from Coupled Consolidation Analyses (연계압밀해석을 통한 압밀이 진행 중인 지반에 근입된 단독말뚝 및 군말뚝의 거동연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.15-25
    • /
    • 2016
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of single piles and pile groups in consolidating ground from coupled consolidation analyses. Single piles, $4{\times}4$ and $6{\times}6$ piles inside groups with a spacing of 2.5D were considered, where D is the pile diameter. It has been found that dragload and downdrag on the piles developed rather quickly at the early stage of consolidation. However, when the degree of consolidation was more than 50~75%, only little increases of dragload and downdrag were induced on the pile. Negative Skin Friction (NSF) on the pile in the fill layer was mobilised quickly and remained constant throughout further consolidation. The development of NSF is influenced both by the relative shear displacements at the pile-soil interface and the vertical effective soil stresses during consolidation. The former governed the early stage of consolidation and the latter affected the later stage of consolidation. The vertical effective soil stresses adjacent to the piles were reduced due to the shear stress transfer at the pile-soil interface, in particular for piles inside the pile groups. The range of NSF influence zone concerning the reductions of the effective vertical soil stresses was about 20D measured from the piles in the horizontal direction. On the contrary, the effective horizontal soil stresses acting on the piles were similar to those at the far field.