• Title/Summary/Keyword: 부동수분

Search Result 29, Processing Time 0.022 seconds

Measurement and Verification of Unfrozen Water Retention Curve of Frozen Sandy Soil Based on Pore Water Salinity (간극수 염분농도에 따른 동결 사질토의 부동수분곡선 산정 및 검증 연구)

  • Kim, Hee-Won;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.53-62
    • /
    • 2023
  • The characteristics of unfrozen water content in frozen soils significantly impact the thermal, hydraulic, and mechanical behavior of the ground. A thorough analysis of the unfrozen water content characteristics of the target subsoil material is crucial for evaluating the stability of frozen ground. This study conducted indoor experiments to measure the freezing point and unfrozen water content of sandy soil while considering pore water salinity. Utilizing the experimental data, we introduced a novel empirical model to conveniently estimate the unfrozen water retention curve. Furthermore, the validity of the unfrozen water retention curve was assessed by comparing the experimental data with the results of a simulation model that utilized the proposed empirical model as input data.

An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils (동결토의 동상팽창압 특성에 관한 실험적 연구)

  • 신은철;박정준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • Most of land reclamation projects are being implemented along the south and west coastal lines of the Korean Peninsula. The earth structures and in-ground LNG tank, and buildings can be constructed using artificial freezing method on the reclaimed land to control the uplift pressure caused by capillary forces. In this study, upon freezing a saturated soil in a closed-system from the top, a considerable frost heaving pressure was developed. Decomposed granite soils, silty soil, and sandy soil were used in the laboratory freeze test which is sometimes subjected to thermal gradients under closed-systems. A major concern has been the ability to predict the frost heaving pressure over the results of relatively short-term laboratory tests. The frost heaving pressure arising within the soil samples and the temperature of the samples inside were monitored with time elapse. The degree of saturation versus heaving pressure curve is presented for each soil sample and the maximum pressure is closely related to this curve. TDR apparatus was used to measure the volumetric water content by the measurement of unfrozen water contents of frozen soils. Unfrozen water increased in soils containing a high percentage of fine-grained particles. In fine-grained soils with strong attractive farces between soil grains and water molecules, additional water is attracted into the pores leading to further volume changes and ice segregation.

Experimental Investigation of Frost Heaving Susceptibility with Soils from Terra Nova Bay in Eastern Antarctica (동남극 테라노바만 흙 시료의 동상특성에 관한 실험적 연구)

  • Hong, Seungseo;Park, Junghee;Lee, Jongsub;Lee, Jangguen;Kang, Jaemo;Kim, Youngseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.5-16
    • /
    • 2012
  • The second scientific antarctic station of South Korea is under construction at Terra Nova Bay located in eastern Antarctica. Ground condition in the Antarctica is frozen in general, but there are seasonal frozen grounds with active layers sporadically. When the active layer is frozen, frost heaving occurs that might cause the differential movement of frozen ground and the failure of structures. Therefore, it is necessary to determine the frost heaving susceptibility of soils at Terra Nova Bay before starting antarctic station construction. This study presents experimental investigation of the frost heaving susceptibility of soil samples with variation of particle sizes and unfrozen water contents. The soil samples were taken from five different locations at Terra Nova Bay and physical properties, unfrozen water content, and frost heaving tests were performed. For the frost heaving tests, soil specimens were frozen with constant freezing temperatures at the top and with drainage at the bottom in order to stimulate the frost heaving. The frost heaving tests provide volume expansion, volumetric strain, and heaving rate which can be used to analyze the relationship between the frost heaving vs. particle size and the frost heaving vs. unfrozen water content. Experimental results show that the more the fine contents exist in soils, the more frost heaving occurs. In addition, the frost heaving depends on unfrozen water content. Experimental data can be used to evaluate the frost heaving susceptibility of soils at the future construction site in the Antarctica.

Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils according to Degree of Saturations and Silt Fractions (포화도와 실트 함량에 따른 동결토의 부동 수분량 및 일축압축강도 특성)

  • Kim, Sang Yeob;Hong, Won-Taek;Hong, Seung Seo;Baek, Yong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.59-67
    • /
    • 2016
  • The strength of frozen soils is affected by size and shape of particles, and the amount of ice and unfrozen water. The objective of this study is to characterize the unfrozen water content and the unconfined compressive strength of the frozen soils according to the degree of saturations and silt fractions. The specimens are mixtures of sand, silt, and water. The silt fractions (SF), which are the ratio of the silt weight ($W_{silt}$) to the sand weight ($W_{sand}$), are 10% and 30%. In addition, the degrees of the saturation are 5%, 10%, 15%, and 20%. The specimens are frozen under the temperature of $-10^{\circ}C$ conditions. The uniaxial compression tests are conducted for 24 hours, 48 hours, and 72 hours after freezing to determine proper freezing time. The freezing time of 24 hours is chosen because the unconfined compressive strengths of specimens after 24 hours freezing times are similar to each other. Furthermore, the unfrozen water content is monitored during freezing using the TDR system. The unfrozen water content increases with the increase of the silt fraction and degree of saturation. The unconfined compressive strength of the frozen soils exponentially increases with increasing the degree of saturation. This study shows that the amount of ice has more influence on the strength of the frozen soils than the amount of unfrozen water.

An Experimental Study of the King Sejong Station and Siberian Frozen Soils (세종기지 및 시베리아 흙의 동결특성 시험)

  • Kim, Youngchin;Shin, Jaewon;Son, Seungmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.5-12
    • /
    • 2009
  • Soil samples from the King Sejong Station in Antarctic and Vladivostok were tested in the laboratory and specific gravity, compaction curve, grain size distribution were determined. The effect of temperature change on the thermal conductivity, unfrozen water content, compressive strength were investigated. In addition, the change of tensile strength with temperature of the soil from Vladivostok was measured. Samples for the compressive strength test and tensional strength test were prepared in a mould with a fixed volume to prevent swelling. Also the effects of temperature and water content change on those strength were compared. Results from the thermal conductivity test showed that thermal conductivity values for both soils was larger at temperatures below freezing than those above freezing. The unfrozen water content dropped rapidly within a temperature range of $0{\sim}-5^{\circ}C$ and then gradually decreased further $-20^{\circ}C$. Compressive strength test results showed various stress/deformation curves with a change in water content. Sandy soil of the King Sejong Station had a much larger strength than ice at an identical temperature, while clayey soil of Vladivostok had a smaller strength than ice in the initial stage, but showed a larger strength at temperatures belows $-15^{\circ}C$. Tensile strength tests revealed an increase in the strength with a decreasing temperature.

  • PDF

An Experimental Study on the Dynamic Characteristics of Frozen Soil (동결토의 동적 특성에 관한 연구)

  • 서상열
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.229-236
    • /
    • 2003
  • Ultrasonic propagation velocities of both the dilatational and shear waves through the weathered tuff soil sampled from the area tying between Ulanbator and Beijing were measured under temperature condition of near subzero by means of sing-around method. After comparing the results with obtained data on unfrozen water content, a linear relation between velocities and unfrozen water content was performed with high coefficient value. Experimental results of two kinds of rather uniform materials, namely, glass-beads and silica micro-beads, testified the similar linear relations. In addition, the change rate of dilatational wave velocities with the change of volumetric unfrozen water content was not dependent on soil type. Although a rational theory of the ultrasonic velocities dependence on the unfrozen water content is not yet proposed, the presented empirical relationships may suggest the appropriate evaluation to the effect of unfrozen water on dynamic characteristics of frozen soil.

An Experimental Study on the Waste Polyethylene Aggregate for Construction Materials (폐비닐 골재의 기본특성에 관한 연구)

  • Kim, Young-Chin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.5-16
    • /
    • 2003
  • The aggregate out of waste polyethylene was made in order to recycle waste polyethylene wasted in the country side. Many physical and mechanical experiments which include leaching test, specific gravity test, compaction test, LA abrasion test, large-scaled shear test, and permeability test were performed for the waste polyethylene aggregate. The thermal conductivity test, unfrozen water content test and frost heave test were also performed. The temperature distribution for both gravels and waste polyethylene aggregate, which were constructed in the frost heave layer in the field, was measured in winter season of continuous 2 years and compared.

  • PDF

Experimental Study for Thermal Characteristics of Frozen Soil Samples (동토 시료의 열적 특성 분석을 위한 실험적 연구)

  • Sewon, Kim;Sangyeong, Park;Jongmuk, Won;YoungSeok, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.31-40
    • /
    • 2022
  • Recently, the Arctic resource development project, where undeveloped energy resources (oil, natural gas, etc.) are deposited, is actively being promoted for the perspective of diversifying the construction market and developing future energy resources. However, the frozen ground always has problems such as sinking and frost-heaving due to extreme weather. Therefore, it is necessary to analyze the thermal characteristics of the frozen soil to secure the stability of the ground structure. In this study, a series of laboratory tests were performed to evaluated the thermal characteristics of frozen soil samples in the oil sand field in Alberta, Canada. In additon, it was compared with the results of domestic(Gangwond-do) sample performed under the same conditions. As a comparison results of the experiments, it was clarified that the different frozen water content and thermal conductivity characteristics by temperature after completion of freezing could affect the frozen soil behavior.

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.