• Title/Summary/Keyword: 볼-스크류 시스템

Search Result 24, Processing Time 0.029 seconds

Precise Control of Ball-Screw Systems with Friction (마찰을 고려한 볼-스크류 시스템의 정밀 제어)

  • 김종식;한성익;공준희;신대왕
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.93-101
    • /
    • 2002
  • The effect of nonlinear friction in the low velocity is dominant in precise controlled mechanisms and it is difficult to identify the friction effect. The friction model which Canudas suggested so called, LuGre model is well expressed the friction effect as Streibeck in the law velocity. But it\`s model parameters were estimated continuously in operation for precise control. This paper suggests the sliding mode controller and observer for compensating the friction effect. Experimental results for a ball-screw system show that the proposed method has a good performance especially in the low velocity.

Development of Arduino-Based Beverage Mixing System (아두이노 기반의 음료 혼합 시스템 개발)

  • Hoo-Jung Yoon;Jeong-Ho Kang;Seon-Je Jo;Jo-Eun Kim;Young-Oh Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.157-164
    • /
    • 2024
  • In this paper, we would like to develop a system that selects the drink you want with an application made with an app inventory for the person who manufactures the drink and manufactures the drink. After combining the drinks to be mixed with the dispenser, the actuator was controlled to accurately move the ball screw to the location of the dispenser by controlling the step motor through Arduino. According to the actuator movement control and the number of times the dispenser is pressed, the amount of drinks to be mixed is extracted in proportion to each other. Finally, we establish a system to replace the labor force of cafes and further suggest directions that the system can be used everywhere.

Precision Measurement System forBall Screw Pitch Error (볼스크류 전구간 피치오차 측정시스템)

  • 박희재;김인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.279-285
    • /
    • 1993
  • This paper presents a precision automatic measuring system for ball screw Pitch. Ball screw is mounted on a precision indexing table, and the ball screw pitch is measured via magnetic scale, where the indexing and measurement are performed by a PC. For precision indexing of ball screw, direct driven motor is coupled to the designed dead and live centers; the performance of the centers are assessed with a precision master sylinder,such as radial motion,tilt motion, and axial motions. An error compensation model is constructed for the measurement system of ball screw pitch, where the error motions of indexing system as well as the scale measurement system are combined to give the measurement error for the ball screw. The developed system proposes an automated precision measurement system for manufacturers and users of ball screw.

  • PDF

Examples of Performance Estimation on the Feed System of Precision Machine Tools (정밀공작기계용 이송시스템의 성능평가 사례)

  • 박천홍;황주호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.19-26
    • /
    • 2004
  • 정밀 공작기계에 있어 안내/이송계(이하, 이송시스템)의 중요성은 새삼스럽게 강조할 필요가 없을 정도로 꾸준히 강조되어 왔다. 또한, 최근 들어서는 광부품, 반도체, 디스플레이 등 초정밀 가공기술시장의 급격한 확대에 따라 이들 산업의 제조장비용 핵심기술로서 이송시스템의 역할 및 수요는 훨씬 확대되어가고 있으며, 오히려 요구정밀도 면에서는 공작기계상에서의 요구성능을 초월하여, 이들 산업에서 개발된 기술이 역으로 공작기계에 적용되어야하는 시점으로까지 진전되고 있다.(중략)

A Diagnosis system of misalignments of linear motion robots using transfer learning (전이 학습을 이용한 선형 이송 로봇의 정렬 이상진단 시스템)

  • Su-bin Hong;Young-dae Lee;Arum Park;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.801-807
    • /
    • 2024
  • Linear motion robots are devices that perform functions such as transferring parts or positioning devices, and require high precision. In companies that develop linear robot application systems, human workers are in charge of quality control and fault diagnosis of linear robots, and the result and accuracy of a fault diagnosis varies depending on the skill level of the person in charge. Recently, there have been many attempts to utilize artificial intelligence to diagnose faults in industrial devices. In this paper, we present a system that automatically diagnoses linear rail and ball screw misalignment of a linear robot using transfer learning. In industrial systems, it is difficult to obtain a lot of learning data, and this causes a data imbalance problem. In this case, a transfer learning model configured by retraining an established model is widely used. The information obtained by using an acceleration sensor and torque sensor was used, and its usefulness was evaluated for each case. After converting the signal obtained from the sensor into a spectrogram image, the type of abnormality was diagnosed using an image recognition artificial intelligence classifier. It is expected that the proposed method can be used not only for linear robots but also for diagnosing other industrial robots.

유한차분법을 이용한 볼스크류 시스템의 열팽창 해석

  • 박정균;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.101-104
    • /
    • 1991
  • Bal1 screw systems has been used for positioning elements of machine tools. In order to maintain high rigidity and accuracy, preload is applied between nut and screw. However, large amount of preload increases frictional heat. Temperature rises remarkably at high speed notion, Thermal expansion degrades positioning accuracy, In this paper, finite differance method is applied to compute temperature distributions and thermal expansions of ball screw systems according to preload condition and rotational steed. Some simulation results show that the developed methodology is good to study thermal expansion of ball screw systems.

  • PDF

Study on Simulation and Calculation Method of Thermal Error Compensation System for a Ball Screw Feed Drive (볼 스크류 이송장치 열 에러 보상 시스템의 시뮬레이션 및 계산 방법에 관한 연구)

  • Xu, Zhe Zhu;Choi, Chang;Kim, Lae-Sung;Baek, Kwon-In;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.88-93
    • /
    • 2017
  • Due to the requirement of the development of the precision manufacturing industry, the accuracy of machine tools has become a key issue in this field. A critical factor that affects the accuracy of machine tools is the feed system, which is generally driven by a ball screw. Basically, to improve the performance of the feed drive system, which will be thermally extended lengthwise by continuous usage, a thermal error compensation system that is highly dependent on the feedback temperature or positioning data is employed in the machine tool system. Due to the overdependence on measuring technology, the cost of the compensation system and low productivity level are inevitable problems in the machine tool industry. This paper presents a novel feed drive thermal error compensation system method that could compensate for thermal error without positioning or temperature feedback. Regarding this thermal error compensation system, the heat generation of components, principal of compensation, thermal model, mathematic model, and calculation method are discussed. As a result, the test data confirm the correctness of the developed feed drive thermal error compensation system very well.

Position Control of Servo Systems Using Feed-Forward Friction Compensation (피드포워드 마찰 보상을 이용한 서보 시스템의 위치 제어)

  • Park, Min-Gyu;Kim, Han-Me;Shin, Jong-Min;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.508-513
    • /
    • 2009
  • Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation.

Precise Control of Dynamic Friction Using SMC and Nonlinear Observer (SMC와 비선형관측기를 이용한 동적마찰에 대한 정밀추종제어)

  • Han, Seong-Ik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.692-697
    • /
    • 2001
  • A precise tracking control scheme on the system in presence of nonlinear dynamic friction is proposed. In this control scheme, the standard SMC is combined with the nonlinear observer to estimate the dynamic friction state that is impossible to measure. Then this control scheme has the good tracking performance and the robustness to parameter variation compared with the standard SMC and the PiD based nonlinear observer control system. This fact is proved by the experiment on the ball-screw driven servo system with the dynamic friction model.

  • PDF