• Title/Summary/Keyword: 복합 폴리프로필렌

Search Result 157, Processing Time 0.024 seconds

Effects of Orientation via Solid-State Extrusion on Properties of Polypropylene/Mica Composites (폴리프로필렌/마이카 복합재료의 물성에 미치는 고상압출 배향의 영향)

  • Lee, Jae Choon;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • The purpose of this work is to investigate the specific gravity, thermal, and mechanical property changes of polypropylene (PP)/mica composites before and after solid-state extrusion. On increasing the filler content, the specific gravity of the composites increased. The specific gravity of the oriented specimen containing filler in PP matrix is found to be much smaller than that of pre-specimen due to the formation of more microvoids. The presence of microvoids in the case of oriented composite specimen significantly affected the tensile and flexural properties of the composites. Both flexural strength and modulus of the composites showed maxima when the mica contents was 10 wt%, regardless of the orientation via solid state extrusion.

Performance Assessment of PVA Geotextile/HDPE Geomembrane Composites

  • Jeon, Han-Yong;Hong, Sang-Jin;Lyoo, Won-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.37-46
    • /
    • 2005
  • PVA geotextile/HDPE geomembrane composites were made to examine the waste landfill related properties. Tensile properties, tear and bursting strengths, AOS(apparent opening size) and permittivity of PVA geotextiles were evaluated, respectively. Ultraviolet stability and chemical resistance to the leachate was evaluated also. Friction property and creep deformation were tested at various loading condition. From this, it was seen that PVA geotextile/HDPE geomembrane composites have more excellent properties than the typically used polypropylene and polyester geotextiles in waste landfill. Finally, creep deformation behaviours of PVA geotextile/HDPE geomembrane composites were more stable than polypropylene and polyester geotextiles through the reduction factor analysis.

  • PDF

Rheological Properties During Mixing and Thermal Properties of Polypropylene/Natural Fiber Composites: II. Effects of A Compatibilizer (폴리프로필렌-천연섬유 복합재료의 혼합시 유변학적 및 열적 특성: II. 상용화제의 영향)

  • Kim, Sam-Jung;Yoo, Chong Sun;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • We investigated effects of a compatibilizer on the rheological properties during mixing and thermal properties of polypropylene (PP)-natural fiber composites. Two types of natural fibers (cotton fiber and wood fiber) were compared. maleic anhydride grafted PP was used for a compatibilizer. On increasing the amounts of the compatibilizer, the torque values of composites were increased, regardless of the kind of fibers. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results showed a slight increase in the degree of crystallinity with adding the compaibilizing agent, while the effects of the kind of fibers were marginal. It may be considered, however, the cotton fiber exhibits better interaction with PP-g-MAH than the natural fiber based on the rheographs, DSC, and XRD results.

  • PDF

A Study on Polypropylene and Surface Modified PET Fiber Composites (표면처리된 PET 섬유와 PP 복합재료에 관한 연구)

  • Hahm, Moon-Seok;Kim, Chang-Hyeon;Ryu, Ju-Whan
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • We confirmed that poly (ethylene terephthalate) (PET) fiber had the possibility to improve the mechanical properties of polypropylene (PP) by fabricating PP/PET fiber composites because PET enhanced mechanical properties and higher melting temperature than PP. But lower compatibility of between PP and PET fibers induced poor mechanical properties of PP/PET fiber composites in spite of incorporating PP-g-MAH as compatibilizer. To solve these problems of PP/PET fiber composites, we carried out a surface treatment on PET fiber using NaOH solution and Prepared PP/PET fiber composites with good mechanical properties by adding PP-g-MAH as a compatibilizer Then the behavior of the mechanical properties was correlated with the results obtained from SEM and IR spectroscopy.

The Effect of Surface-Modification of Wood Powders by Plasma Treatment of Propylene on the Mechanical Properties of Wood Powder/PP Composites (프로필렌의 플라즈마 처리로 개질된 목분이 복합재료의 기계적 특성에 미치는 영향)

  • Cho, Dong Lyun;Ha, Jong-Rok;Kim, Byung Sun;Yi, Jin Woo
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.145-148
    • /
    • 2017
  • Wood powders were surface-modified by plasma-treating propylene to make them compatible with PP matrix in WPC(wood powder composite). The plasma treatment of propylene resulted in the deposition of an ultrathin hydrophobic film which had the chemical structure similar to that of polypropylene. Wood powder and polypropylene were mixed to pellets by twin screw extruder and then 50 wt% wood powder/PP composites were produced by an injection machine. Tensile strength and flexural strength were improved by 7.59% and 12.43% at the maximum respectively. SEM (Scanning Electron Microscopy) observation on the fracture surface revealed that the treatment improved the interfacial bonding and the mechanical properties of the composites.

Interfacial Pullout Characteristics of Recycled PET Fiber With Hydrophilic Chemical Treatments in Cement Based Composites (화학적 친수성 처리율에 따른 재생 PET 섬유와 시멘트 복합재료와의 계면 인발 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Yoon-Jeong;Park, Kyung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.333-339
    • /
    • 2007
  • The purpose of this study was to enhance bond performance between recycled PET (polyethylene telephthalat) fiber and cement composites through hydrophilic treatment using maleic anhydride grafted polypropylene(mPP). The mPP with various concentration of 0%, 5%, 10%, 15% and 20% to determine effect on bond behavior of recycled PET fiber were applied as experimental variables. Dog bone shaped specimens according to JCI SF-8 was applied to evaluate the bond strength and pullout energy. The results showed increased bond strength and pullout energy as concentration of mPP. Concentration of 15% mPP showed the most effective results while 20% showed reduced performance results. Because 15% mPP ensures perfect coating while 20% makes thick coating area that resulted in crack propagation and consequent separation of PET fiber and coated area during pullout load occurred. Enhancement mechanism of bond performance of recycled PET fiber and cement composites with each concentration of mPP could be conformed through investigation of microstructure of fiber surface.

Effect of Fabricating Temperature on the Mechanical Properties of Spread Carbon Fiber Fabric Composites (스프레드 탄소섬유 직물 복합재료의 성형온도에 따른 기계적 특성에 관한 연구)

  • Eun, Jong Hyun;Gwak, Jae Won;Kim, Ki Jung;Kim, Min Seong;Sung, Sun Min;Choi, Bo Kyoung;Kim, Dong Hyun;Lee, Joon Seok
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.161-168
    • /
    • 2020
  • In this paper, we have studied the mechanical properties of thermoplastic carbon fiber fabric composites with spread technology and compression molding temperature were investigated. Carbon fiber reinforcement composites were fabricated using commercial carbon fiber fabrics and spread carbon fiber fabrics. Mechanical properties of the commercial carbon fiber composites (CCFC) and spread carbon fiber composites (SCFC) according to compression molding temperatures were investigated. Thermal properties of the polypropylene film were examined by rheometer, differential scanning calorimetry, thermal gravimetric analysis. Tensile, flexural and Inter-laminar shear test. Commercial carbon fiber reinforcement composites and spread carbon fiber composites were fabricated at 200~240℃ above the melting temperature of the polypropylene film. Impregnation properties according to compression molding temperature of the polypropylene film were investigated by scanning electron microscopy. As a result, as the compression molding temperature was increased, the viscosity of the polypropylene film was decreased. The mechanical properties of the compression molding temperature of 230℃ spread carbon fiber composite was superior.

Study on a compatibilization of polypropylene/thermotropic liquid crystalline polymer blends (폴리프로필렌/열방성 액정 고분자 블렌드의 상용화에 관한 연구)

  • Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1215-1219
    • /
    • 2007
  • In this paper, we present a study on the polypropylene/thermotropic liquid crystalline polymer blends. In previous researches, the blends are fabricated at very high temperatures, at least 300oC, since the TLCPs investigated in most studies have melting temperatures higher than 270oC. As a consequence, the thermal degradation of PP can not be avoidable. In order to obtain high physical properties, the excess amount of TLCP must be added. In this study, a new type of TLCP was used in the PP/TLCP blends. Since the new TLCP has a melting point of 220oC, the blending can be performed at much lower temperature than the previous studios. The new PP/TLCP shows similar or somewhat higher physical properties than those of the previous studies. It is proved that the new TLCP can be used as a reinforcement material in PP based blends.

  • PDF

Effects of Type of Synthetic Fiber on Material Properties of Cementless Composite (합성섬유 종류가 무시멘트 복합재료의 재료 거동에 미치는 영향)

  • Choi, Jeong-Il;Park, Se-Eon;Cha, Sang Lyul;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.255-261
    • /
    • 2019
  • The purpose of this study is to investigate effects of types of synthetic fibers on mechanical properties of alkali-activated slag composite. Materials and mixture proportion for matrix are determined, and the compressive strength, tensile performance, and cracking patterns of three composites reinforced by polypropylene, polyvinyl-alcohol, and polyethylene fibers. From the test results, it was observed that polyvinyl-alcohol fiber-reinforced composite and polyethylene fiber-reinforced composite had similar tensile performance. On the other hand, polypropylene fiber-reinforced composite showed low tensile performance. And it was exhibited that other factors except tensile strength and aspect ratio of fiber influence significantly tensile behavior of composite.