• Title/Summary/Keyword: 복합 열전달 해석

Search Result 96, Processing Time 0.029 seconds

Thermal analysis inside a small chamber including radiation (미소 챔버 내 복사열전달을 수반한 열유동 해석)

  • Lee, Hyung-Sik;Do, Gi-Jung;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.194-198
    • /
    • 2006
  • In this study, numerical modeling was performed to analyze air flow including radiation heat transfer inside a small chamber. Characteristics of heat transfer between source plate and target through glass are investigated for various surface temperature of heat source plate with buoyancy effect due to gravity force. Conduction heat transfer through the glass is considered and heat source plate is assumed to be a black body. Target surface temperature is largely affected by the radiation heat transfer. It can also be seen that as the source temperature increases target surface is dominated by radiation rather than convective heat transfer by air.

  • PDF

Prediction of Temperature and Degree of Cure of Carbon Fiber Composites Considering Thermal Chemical Reaction (화학 반응열을 고려한 탄소 섬유 복합재 온도와 경화도 예측)

  • Jae-Woo Yu;Wie-Dae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.315-320
    • /
    • 2023
  • In the manufacturing process of thermosetting carbon fiber composite materials using an autoclave, the internal temperature changes according to the set temperature cycle. This temperature change causes the resin in the composite material to cure. Heat is generated through the chemical reaction of the resin, which can result in a difference between the temperature inside the autoclave and the temperature of the composite material. Previous research assumed that the temperatures of the composite material and the autoclave were the same and analyzed to predict the residual stress and thermal deformation after manufacturing. However, these stresses and deformations depend on the temperature and degree of cure of the composite material. Therefore, this study verifies a thermal-chemical model analysis technique that takes into account the heat generated by the chemical reaction of the resin to accurately calculate the temperature and degree of cure. Additionally, case studies were conducted for different thicknesses to investigate whether this model exhibits similar trends across varying thicknesses.

DEVELOPMENT OF CFD PROGRAM FOR THE CONJUGATE HEAT TRANSFER ANALYSIS OF PMSM ELECTRIC MOTOR (PMSM 전동기 모터의 복합 열전달 해석을 위한 CFD 프로그램 개발)

  • Lee, Jung-Hee;Choi, Jong-Rak;Hur, Nahm-Keon;Kim, Joo-Han;Kim, Young-Kyoun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.488-493
    • /
    • 2011
  • The object of this study is to develope the program for analyzing the fluid flow and heat transfer of PMSM electric motor. The program will be mainly used for inexperienced users of CFD analysis. So it has to be performed using the geometry data and the heat source of each part only. Interface program for converting the given data to the instruction of pre-processor is developed. The conjugate heat transfer between a flow passage of the motor and inner parts consisting of rotor and stator is regarded. In order to reduce the computational time and memory storage, cyclic boundary condition is applied. For the numerical simulation, MRF(Multi-Reference Frame) method is used to consider rotating operation of the rotor and heat source is applied to the copper, wire, and magnetic parts in the motor. On the screen of computer, the users can show the velocity distributions and the contours such as pressure, turbulent kinetic energy, turbulent dissipation rate and temperature.

  • PDF

A NUMERICAL STUDY ON THE CONJUGATE HEAT TRANSFER OF AN OIL COOLER WITH OFFSET STRIP FINS FOR VARIOUS-FLOW RATES (오일의 유량 변화와 오프셋 스트립 휜을 고려한 오일쿨러의 복합열전달 해석)

  • Park, S.W.;Choi, H.G.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • Conjugate heat transfer of an automotive oil cooler with offset-strip fins was numerically investigated to predict the performance of the oil cooler for various flow-rates. The simulations were conducted by directly modeling offset-strip fins with unstructured meshes. The incompressible Navier-Stokes equations coupled with energy equation were used for the present simulations. Heat transfer characteristics of the oil cooler was compared well with experimental results and the errors were approximately within 5 percents. It was found that the performance of the oil cooler increased as the flow-rate increased up to the flow-rate of 12 L/min, but the performance seemed to be saturated beyond a critical flow-rate, which was estimated as 15 L/min. Furthermore, it was confirmed that compared to the performance without fins, that of the oil cooler with offset-strip fins was increased by about 75 percents.

Large Eddy Simulation of Heat Transfer Performance Enhancement due to Unsteady Flow in Compound Channels (복합 부수로의 비정상 유동이 유발하는 난류열전달 증진에 대한 LES 해석)

  • Hong, Seong-Ho;Shin, Jong-Keun;Choi, Young-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • In the present article, we investigate numerically turbulent flow of air through compound rectangular channels. Large eddy simulation(LES) is employed for unsteady turbulence modeling. LES gives better predictions for the axial mean velocity distribution than those of other turbulent models. Strong large-scale quasi-periodic flow oscillations are observed in most of the geometries investigated. Such large-scale flow oscillations in compound rectangular channels are similar to the quasi-periodic flow pulsation through the gaps between fuel rod bundle in nuclear reactor. It exists in any longitudinal connecting gap between two flow channels. The frequency of this flow oscillation is determined by the geometry of the gap. The large scale cross motions through the rectangular compound channels induce significant heat transfer enhancement of the compound channel flow.

A Generalized Model for the Prediction of Thermally-Induced CANDU Fuel Element Bowing (CANDU 핵연료봉의 열적 휨 모형 및 예측)

  • Suk, H.C.;Sim, K-S.;Park, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.811-824
    • /
    • 1995
  • The CANDU element bowing is attributed to actions of both the thermally induced bending moments and the bending moment due to hydraulic drag and mechanical loads, where the bowing is defined as the lateral deflection of an element from the axial centerline. This paper consider only the thermally-induced bending moments which are generated both within the sheath and the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element The generalized and explicit analytical formula for the thermally-induced bending is presented in con-sideration of 1) bending of an empty tube treated by neglecting the fuel/sheath mechanical interaction and 2) fuel/sheath interaction due to the pellet and sheath temperature variations, where in each case the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. As the results of the sensitivity calculations of the element bowing with the variations of the parameters in the formula, it is found that the element bowing is greatly affected relatively with the variations or changes of element length, sheath inside diameter, average coolant temperature and its variation factor, pellet/sheath mechanical interaction factor, neutron flux depression factor, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient and sheath and pellet thermal conductivities.

  • PDF

Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation (열변형 해석을 위한 허니컴 샌드위치 평판의 열 및 탄성 물성치 예측에 관한 연구)

  • Hong, Seok Min;Lee, Jang Il;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties.

Computational Turbulent Models (난류유동의 계산모형)

  • 정명균
    • Journal of the KSME
    • /
    • v.34 no.9
    • /
    • pp.688-697
    • /
    • 1994
  • 유체유동이나 열전달 그리고 물질전달 (물질의 혼합 및 확산) 또는 이들 현상이 복합적으로 나 타나는 각종 기계의 설계와 성능 해석을 하기 위해서는 그 현상을 지배하는 편미분 방정식들의 해를 수치적으로 구해야 한다. 유동 상태가 충류 유동인 경우는 지배 방정식의 수가 알고자 하는 미지변수 즉 속도, 압력, 온도, 농도 등의 개수와 같고 또한 이들 변수들의 변동이 그리 심하지 않기 때문에 적절한 수치 해법을 사용하면 그 해를 구할 수 있다. 그러나 난류유동의 경우에는 변수들이 시간상으로 또한 공간적으로 대단히 심하게 변동(fluctuation)하기 때문에 공 학적으로 우리가 원하는 정보들, 즉, 표면 마찰저항이나 양력, 얼전달 계수, 물질 확산계수 등을 현재 수준의 전자계산기로 계산하는 데는 계산시간이 엄청나게 소요될 뿐만 아니라 변수 저장 메모리도 과도하게 차지하기 때문에 실제적인 계산 방법이 되지 못하고 있다. 이러한 이유로 변수들의 순간 변화 상태를 나타내는 지배 방정식들을 해석하는 대신에 이들 지배 방정식의 시 간평균을 취하여 유도한 난류 방정식들을 사용하게 된다. 그러나 이 시간 평균 과정에서 파생 되는 또 다른 미지의 난류 변수들 때문에 난류 지배 방정식에 있어서는 그 지배 방정식의 개수 보다 미지 변수의 개수가 많아져서 난류 지배 방정식을 풀기 위해서는 시간평균 과정에서 나타난 난류 변수들을 원래 있던 미지 변수들의 함수나 방정식의 형태로 가정할 필요가 있게 되는데 이 가정되는 함수 관계들을 난류 계산 모형이라고 한다. 난류 계산 모형은 물리적인 통찰과 직관에 의해서 실용적인 형태로 가정되기도 하지만 최근에는 논리적으로 엄격한 모형 원칙에 따른 수 학적인 방법으로 유도되고 있는데 이 글에서는 일반 독자들이 쉽게 이해할 수 있도록 마하수가 낮은 2차원 비압축성 난류 유동을 예로 들어 x-y 직교 좌표계에서 표현되는 난류 계산 모형들을 소개하고 앞으로듸 발전 방향을 개관하며 현재의 응용 사례들을 예로 들어 모형의 성능을 비교 하여 보기로 한다.

  • PDF

THERMAL-FLUID PERFORMANCE ANALYSIS OF COMPACT HEAT EXCHANGERS HAVING A PERIODIC CHANNEL CONFIGURATION (주기적인 채널형상을 갖는 고밀도 열교환기의 열유동 성능해석)

  • Kim, M.H.;Lee, W.J.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.47-54
    • /
    • 2007
  • A periodic CFD approach for the performance analysis of compact high temperature heat exchangers is introduced and applied to selected benchmark problems, which are a fully developed 2D laminar heat transfer, a conjugate heat transfer between parallel plates which have exact solutions, and a heat transfer in a real high temperature heat exchanger module. The results for the 2D laminar heat transfer and the 2D conjugate heat transfer showed a very good agreement with the exact solutions. For the high temperature heat exchanger module, the pressure drops were predicted well but some difference was observed in the temperature parameters when compared to the full channel CFD analysis due to assumptions introduced into the periodic approach. Considering its assumptions and simplicities, however, the results showed that the periodic approach provides physically reasonable results and it is sufficient to predict the performance of a heat exchanger within an engineering margin and with much less CPU time than the case of a full channel analysis.

A Numerical Simulation of Flow and Heat Transfer in a Dimple-type Plate Heat Exchanger (딤플형 판형 열교환기의 유동 및 전열특성에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Park, Hyoung-Joon;Ryu, Hea-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • In the present study, the characteristics on the internal flow and heat transfer of the dimple-type plate heat exchanger were numerically investigated. For the numerical analysis, the conjugate heat transfer analysis between hot fluid-separating plate-cold fluid was performed using the periodic boundary condition at the center area of the plate and appropriate inlet and outlet conditions for the two streams. The numerical results were validated by the comparison with the experimental data. From these results, the correlations of the Colburn j-factor for the heat transfer and the Fanning f-factor for the flow friction were obtained. The present results could be applicable for the optimal design of dimple-type plate heat exchanger.