• Title/Summary/Keyword: 복합판

Search Result 1,038, Processing Time 0.022 seconds

Finite element analysis of callus generation in fractured bones according to the strain distribution (골절부 변형률에 따른 골절부 가골 형성 과정의 유한요소해석)

  • Kim, Suk-Hun;Park, Myong-Gil;An, Song-Tao;Cho, Sung-Kyum;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.29-34
    • /
    • 2009
  • In this paper, finite element analyses were used to estimate the strain distribution at the fracture site of a tibia bone. A stainless steel bone plate and various composite bone plates were considered to find out the best conditions for callus generation while bone fracture was cured for 16 weeks. Through this research, the appropriate load condition which makes the strains between the appropriate range($2{\sim}10%$) was sought. From this analysis, it was found that lower level of external load is needed for the appropriate strain for the case of composite bone plate application and it was also found that the composite bone plate had potential advantages for effective bone fracture healing relieved stress shielding effect.

Detection of High-Velocity Impact Damage in Composite Laminates Using PVDF Sensor Signals (고분자 압전 필름 센서를 이용한 복합재 적층판의 고속 충격 손상 탐지)

  • Kim Jin-Won;Kim In-Gul
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.26-33
    • /
    • 2005
  • The mechanical properties of composite materials may severely degrade in the presence of damage. Especially, the high-velocity impact such as bird strike, a hailstorm, and a small piece of tire or stone during high taxing, can cause considerable damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single technique or any conventional methods. In this paper, the PVDF(polyvinylidene fluoride) film sensors were used for monitoring high-velocity impact damage initiation and propagation in composite laminates. The WT(wavelet transform) and STFT(short time Fourier transform) are used to decompose the sensor signals. A ultrasonic C-scan and a digital microscope are also used to examine the extent of the damage in each case. This research shows how various sensing techniques, PVDF sensor in particular, can be used to characterize high-velocity impact damage in advanced composite.

Reliability Analysis for Composite Laminated Plate Using Hybrid Response Surface Method (복합 반응면 기법을 이용한 복합재 적층판의 신뢰성해석)

  • Lee, Seok-Je;Kim, In-Gul
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.40-47
    • /
    • 2010
  • In this paper, the hybrid response surface method(HRSM) is proposed and examined. Hybrid response surface method calculate a approximate model repeatedly based on MPP coordinates. To verify the performance, probability of failure, MPP(Most Probable failure Point) and reliability index are calculated for nonlinear function and composite laminated plate by using reliability analysis method and compared with results by using typical response surface method(RSM). Probability of failure is calculated under the assumption of the nonlinear limit state equation and given failure criterion. The results of proposed method shows performance improvement in estimating the probability of failure.

탄소섬유 강화 복합재료를 이용한 증기발생기용 노즐댐 설계

  • 박진석;김태룡;오제훈;이대길
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.253-258
    • /
    • 1996
  • 원자로의 가동 중지 중이나 재장전시 원자로가 설치되어 있는 수조의 냉각수가 증기발생기 안으로 유입되는 것을 막는 장비로써 노즐댐을 사용한다. 현재의 노즐댐은 알루미늄 재질로 그 무게가 무거워 노즐댐 작업자가 취급하기 어렵다. 이 노즐댐의 경량화와 동시에 구조적 강도를 증가시키기 위해서 비강성이 높은 탄소섬유 강화 복합재료와 굽힘 강성 및 전단강성을 증가시키기 위하여 벌집구조(honeycomb)의 알루미늄을 사용하여 KAERI 노즐댐-II를 설계하였다. 노즐댐에 발생하는 응력 해석을 통하여 중앙판과 측면판의 변위가 충분히 작은 값을 가지면서 파괴지수도 충분히 작은 값이 되는 탄소섬유의 적층각도를 구하였으며, 중앙판은 [$\pm$15]로 적층하고 측면판은 [$\pm$45 ]로 적층 하였다. 그리고 각 판의 최대 파괴지수는 중앙판의 경우 0.32, 측면판의 경우 0.27 이었고 최대변위는 각각 3.1mm, 2.7mm로 노즐댐을 사용할 때 예상되는 하중에 대하여 노즐댐의 구조적 건전성을 입증하였다.

  • PDF

Processability of Bio-composites Applied Polyolefin to Recycled Fiberboard Flour (Polyolefin계 고분자에 섬유판 가공 부산물을 적용한 환경 친화형 바이오복합재의 가공성)

  • Choi, Seung-Woo;Kim, Hee-Soo;Lee, Byoung-Ho;Kim, Hyun-Joong;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.55-62
    • /
    • 2005
  • This study was conducted to evaluate the application of a bio-composite made by the addition recycled fiber board flour as filler. Recycled fiber board (high density fiber board, HDF) flour was added to polyolefin polymer low density polyethylene (LDPE) and polypropylene (PP) for the preparation of bio-composite materials. The mechanical properties and processability of the recycled HDF flour filled LDPE and recycled HDF flour filled PP bio-composites were then measured and compared to those of wood flour (WF) and rice-husk flour (RHF) filled LDPE and PP bio-composites, respectively. The tensile and impact strengths of the recycled HDF flour filled LDPE and PP bio-composites had similar mechanical properties to those of the WF and RHF filled LDPE and PP bio-composites. To measure the processability, torques of the bio-composites were also measured. The torques of the HDF flour filled LDPE and PP bio-composites were lower than those of the WF and RHF filled polyolefin (PP and LDPE) bio-composites with a filler loading of 30 wt.%. This result showed definite processability, which was not related with the distribution of the particle size of the material added. The recycled fiber board flour filled bio-composites showed applicability as substitutes for the bio-composites currently used in the bio-composites industry.

A Study on Compressive Strength of Carbon/epoxy Composite Structure Repaired with Bonded Patches after Impact Damage (충격 손상된 카본/에폭시 복합재 구조의 패치 접착 보수 방안 적용 후 압축 강도 특성 평가)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lim, Sung-Jin;Shin, Chul-Jin
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.15-21
    • /
    • 2010
  • In this study, repair and maintenance schemes of the damaged composite structure was investigated, and a repair process of the carbon/epoxy laminate composite structure was investigated numerically and experimentally. The composite laminates were damaged by drop weight type impact test machine. The damaged composite structure was repaired using external patch repair method after removing damaged area. The compressive strength test and analysis results after repairing the impact damaged specimens were compared with the compressive strength test and analysis results of undamaged specimens and impact damaged specimens. Finally, the strength recovery capability by repairing were investigated.

Development of a Thermoplastic Composite Parabolic Antenna Reflector using Automated Fiber Placement Method (자동섬유적층법을 이용한 열가소성 복합재료 접시형 안테나 반사판 개발)

  • Kim, Jin-Bong;Kim, Tae-Wook
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.15-21
    • /
    • 2006
  • It is very difficult to make complex 3 dimensional curved-shape composite laminates using the advanced unidirectional composite prepregs. This study shows development process of subscale composite parabolic antenna reflector using unidirectional AS4/PEEK prepreg tapes. The AS4/PEEK thermoplastic composite materials are known to have good thermal and chemical stabilities in addition to their high specific strength and modulus. Various lamination methods were investigated through finite element analyses to make up the laminate design of the reflector. The automated fiber placement method was used to fabricate the reflector. The thermal expansion test using full-bridge strain gage circuits was done to verity the performance of the composite product.

Parametric effects on geometrical nonlinear dynamic behaviors of laminated composite skew plates (적층된 복합소재 경사판의 기하학적 비선형 동적 거동에 미치는 매개변수 영향)

  • Lee, Sang-Youl
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.217-223
    • /
    • 2012
  • This study investigates a geometrical nonlinear dynamic behaviors of laminated skew plates made of advanced composite materials (ACM). Based on the first-order shear deformation plate theory (FSDT), the Newmark method and Newton-Raphson iteration are used for the nonlinear dynamic solution. The effects of cutout sizes, skew angles and lay up sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite plates with or without central cutouts, and the new results reported in this paper show the significant interactions between the cutout, skew angles and layup sequence in the laminate. Key observation points are discussed and a brief design guideline of skew laminates is given.

A Study on Prediction of Fatigue Damage Crack Growth for Stiffener Bonded Composite Laminate Panel (보강재 본딩접합 복합재 적층판구조 피로손상 균열진전 수명예측에 대한 연구)

  • Kwon, Jung-Ho;Jeong, Seong-Moon
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • The prediction and analysis procedure of fatigue damage crack growth life for a stiffener bonded composite laminate panel including center hole and edge notch damage, was studied. It was performed on the basis of fatigue damage growth test results on a laminated skin panel specimens and the analysis results of stress intensity factor for the stiffener bonded composite panel. According to the comparison between experimental test and prediction results of fatigue damage growth life, it was concluded that the residual strength and damage tolerance assessment can be carried out along to the edge notch crack growth.

Transient Analysis of Partially Supported Laminated Composite Plates With Cutouts (부분지지되고 개구부를 갖는 적층복합판의 동적해석)

  • Lee, Won Hong;Han, Sung Cheon;Yoon, Seok Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.667-676
    • /
    • 1998
  • The transient analysis of partially supported laminated plates with rectangular holes under uniformly distributed transverse load is studied using finite element method. The first-order shear deformation theory and the variational energy method are employed in mathematical formulation. The effects on central deflection by plate thickness ratio, material modulus ratio, ply lamination geometry and boundary conditions are investigated Numerical results are presented and comparisons of the results by the present method with those given in the literature are made.

  • PDF