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Transient Analysis of Partially Supported Laminated
Composite Plates With Cutouts
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ABSTRACT :
with rectangular holes under uniformly distributed transverse load is studied
using finite element method. The first-order shear deformation theory and the
variational energy method are employed in mathematical formulation. The

The transient analysis of partially supported laminated plates

effects on central deflection by plate thickness ratio, material modulus ratio,
ply lamination geometry and boundary conditions are investigated. Numerical
results are presented and comparisons of the results by the present method
with those given in the literature are made.
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1. Introduction

It is well known that composite materials
have been in great usage in modern
structures. For lightweight consideration,
the composite laminates used in modern
structures are usually very thin. Owing
to the anisotropic and nonhomogeneous
properties of the composite laminate, its
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transient response is different from that of
the traditional material, so it is necessary
to pay attention to the transient response
of composite materials. Most structures,
whether they are used in land. sea or air,
are subjected to dynamic loads during
their operation. Therefore, there exists a
need for assessing the transient response
of laminated plates.
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The transient response of laminated
composite plates has been studied under a
variety of loading and boundary conditions
by both analytical and numerical techniques,
such as finite element method." ® These
studies have concentrated mainly on square/
rectangular plates with either simply
supported or clamped boundary condition.
In practical situations, however, because
most civil and industrial structures consist
of pipes and instruments., structural
engineers may quite often encounter
partially supported square plates with
cutouts. Therefore, opening plate is
necessary for pipes containing their
sevicability passing through the plate.

In the present paper, transient analysis
of layered, anisotropic, partially supported
composite plates with cutouts is investigated
using a shear deformable finite element
method.

2. Governing Equations

The laminated plate with constant
thickness % is composed of orthotropic
laminae stacking symmetrically or anti-
symmetrically about the middle surface of
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Fig. 1 Coordinate system for laminated plate

plate. Rectangular cartesian coordinates
(x, . 2) are used for the plate coordinates
where the x-y plane coincides with the
middle surface of plate, as shown in Fig. 1.
It has been shown that transverse
shear must be taken into account for a
plate made of advanced composites that
feature a relatively low shear modulus.
The constitutive equations for an

orthotropic layer can be written as
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where bl‘]‘ are the reduced stiffnesses,
which can be expressed in terms of the
elastic constants C; by coordinate trans-

N . ()
formations.'

A first-order shear deformation theorym

is employed in this study, thus the
displacement field is assumed to be of the

form:

w(x, 9,2, 0= ulx,y,H)+2¢,(x,9,0
u(x,v,2,0= v(x,y,0+24,(x, 5,0 (2)

us(x,v,2,0)= wix,v, 8

where #, v and w denote the displacement
of any point on the middle surface: and

¢, and ¢, are the rotations of normals

to midplane about the ¥ and x axes,

respectively. Linear strain—displacement
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relations are used for the derivation of
governing equations. The total energy of a
laminated plate under static loading is
defined as

nI=U,+U;+V (3)

where Up the strain energy due to plate
bending, Us; the strain energy due to
transverse shear, and V the potential
energy by external loadings. They are
given by

U,= % f [o.£, + 0,6, + 0,6,] dxdydz
U,= -%- f[ Tye€yz T T dxdydz

V= — fk)qwdxdy

The transverse load, ¢ . defined by
g= qoH(t— )

where g¢o is the density of the load, H(#)
denotes the Heavyside step function and
fr denotes the time removing load.

The kinetic energy of laminated plate is
defined by

T= [ ol(u)?+ (0.0 + (w,)*] drdydz(4)

where ¢ is the density of the material.
Applying the theorem of stationary total
potential energy(S) and the variational
method® in conjunction with the stress-

strain and strain-displacement relations,
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one may obtain, from Equation (3) and
(4), the following equilibrium equations.

N, + Ny,=Pu,+ R, s

Ny st Nyy=Pv yt+ Ry n

Qi+ Qy=Pwytqlx, v, (5)
M+ My,~ @ =18, n+ Ru 4

My, + My~ Q=1¢, 4+ Rv 4

where P, R and I are the normal, coupled
normal-rotary and rotary inertia coefficients,
respectively,

h/2 9
(PRI = [ (1,2.2)0de

and N;, Q; and M; are the stress and
moment resultants defined by

h/2
(v, Mi)=£h 0:(1,2)dz, (i=x, y, xy)

Ql! QZ= fh/z( Tyzs sz)dz

3. Finite Element Formulation

The shear
laminated composite plates involves five

deformable theory of

dependent unknowns (u, v, w, ¢,, ¢,).

Here, we develop the finite-element model
of the theory using the variational
statement in the theorem of stationary
total potential energy.

Suppose that the midplane R of the
plate is subdivided into a finite number of
elements, R.(e=1,2,....). Over each element,

R, the generalized displacement U is
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interpolated by expressions of the form''”

U= 2 U ¢,(x.9) ©)

where U; is the value of U at node i
at time ¢, ¢; is the finite element
interpolation functions at node i and 7 is
the number of nodes in the element. For
simplicity, we use the same interpolation
for each of the generalized displacements
(., v, w, ¢,, ¢,) Substituting Eq. (6)
into Eq. (5), we obtain the element
equations

[MI{A}+ [K]{a)}= {F} (7

where { A} is the column vector of the
nodal values of the generalized dis-
placements, (K] is the matrix of stiffness
coefficients, (M) is the matrix of mass
coefficients, and {F} is the column vector
containing the boundary and body force
contributions.

Equation (7) <can be reduced to
appropriate forms depending on the type
of analysis. For static analysis, {24}is set
to zero. To complete the discretization,
we must now approximate the time
derivatives appearing in equation (7).
Here we wuse the Newmark's direct
integration method,"""” in which the vectors
{a} and {A} at the end of a time step

4t are expressed in the form

{8 ={a+ [(=a){ &}, +al A},. )4t
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(8)
where @ and B are parameters that control
the accuracy and stability of the scheme,
and the subscript ‘#’ indicates that
solution is evaluated at the =n-th time
step ( i.e. at time, t= ndtf). The choice

a=% and B= %(which corresponds

to the Constant Average Acceleration

method) is known to give unconditionally

stable solutions (in linear problems).
Rearranging equation(7) and (8), we

arrive at

[RI{A), = {F} (9)
where

[R1=[K]+ ay[ M]
{F}: {F}n+l+[M](ao{A}n+dl{‘A}n

+ a2{ Z&}n)

a0=1/(ﬂdtz), a1=aodt, as = ~-1

1
28
Once the solution {4} is known at
tae1 = (n+1)4dt, the first and second
derivatives (velocity and accelerations)
of {a} at .4,

can be computed

rearranging the expressions in equation(8),

as

{A}i1= ay({a),0 —{2},) +a {2},

+ dg{ A}n



{'A}n-#l = { A}n-i'_ 613{ A}n+ 04{ A}n+1(]~0)

where a3 = (1—a)dt, ag= adt .

All of the operations indicated above,
except for equation(8), can be obtained
for the whole problem. The equation is
then solved for the global solution vector

at time f=£,,1 .

4. Numerical Result and Discussion

In the present study nine-node isopara-
metric element was employed. Since the
finite element accounts for the transverse
shear strains, reduced integration'? was
employed to evaluate the shear terms
numerically. That is, the 2X2 Gaussian
rule was used to integrate the shear
related terms while the 3%X3 Gaussian
rule was used to integrate the bending
terms. The Young's moduli, shear moduli,
Poisson’s ratio, material density, load
density, time step, length and width of
the rectangular laminated plate, and

thickness of the laminate are assumed to
4
pe (18 (9

E\E,=25, Gp/Ey= G/ Ey= Gu/E,=0.5,
vie=0.25 a=b=25cm, h=5cm
p=8x10"% Nsec?/ cm'

0 = 10N/ om’®,

E,=2.1x10% N/ em®, dt=5psec .

To validate the derived equations, the
obtained deflections of simply supported
isotropic plates under suddenly applied
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Table 1. Comparison of center defiection for
isotropic and orthotropic plates
under uniform pluse loading.

Deflection, wx10° (cm)
time [time | Isotropic plate | Orthotropic plate

#sec | step (Ir%eef(,igé}ll) present ([}:f(,iiiZ) present

10 | 2 | 0.0079 |0.00792] 0.0079 [0.00796
20 | 4 | 0.0399 10.03992| 0.0398 |0.03985
40 | 8 | 0.1855 10.18547] 0.1939 | 0.19389
60 | 12 | 0.5339 10.563392| 0.4303 | 0.43033
80 | 16 | 0.9249 10.92493} 0.5531 [0.55311
100 | 20 | 1.2278 [1.22781| 0.5264 |0.52642
120 | 24 | 1.4591 [1.45907| 0.3705 | 0.37046
140 | 28 | 1.6537 |1.65369| 0.1779 |0.17787
160 | 32 | 1.6667 |1.66675] 0.0353 | 0.35330
180 | 36 | 1.4604 |1.46037| -0.0395 |-0.39463
200 | 40 | 1.1728 11.17276] 0.1105 | 0.11046

uniformly distributed pulse loading are
compared with those of Reddy"” in Table
1. They are in excellent agreement.

To show the effect of the coupling
between the inplane displacements (%, )

and bending displacements (w, ¢,. ¢,) on

the transverse central deflection, cross—-ply
and angle-ply plates, subjected to
suddenly applied uniform pulse loading,
were analyzed and the results are shown
in Fig. 2. From this figure one can see

Center Deflection { cm )

Present : 5 DOF (0 /0)
Present : § DOF (45/-45)
Reddy : 3 DOF (0 90)
Awddy : 3 DOF (45/-45

0.4 T T T T T T T
° 10 20
Number of Time Step

Fig. 2 Comparison of center deflection for
two-layer composite laminated plate
under uniform loading
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Table 2. Deflection of simply supported
cross-ply and angle-ply square plates

( w= wE,h’/qa' , a/h = 5)

Lamination| FSDT(present) CLPT(ref. 13)
angle | Trans|giatic| Ratio | LL20S | Static| Ratio

0/90 3.990|1.947|2.049|3.421|1.695}2.018

0/90/0/90|2.131|1.061|2.008| - - -

45/-45 [2.611(1.279(2.041]2.120|1.028|2.062

45/-45/ B 3 -
b 4n |1.394/0.692/2.014

FSDT : First-order Shear Deformation Theory
CLPT : Classical Plate Theory

that the coupling has a noticeable
influence on the response of the plate. Table
2 shows the ratio of maximum transient
deflection to static deflection. The maximum
transient deflection for the two-layer
cross—ply laminated composite plate is 3.990
and it is about 2.049 times that of the static
deflection. The effect of transverse shear is
greater on transient response than static
response in the two-layer cross—ply plate but
the effect of transverse shear is less on
transient response than static response in
the two-layer angle-ply plates.

Datisction
w x 1000
+ 4 x 100000

Deftection (cm )
»
°
P

0 20 40 0 80 100
Number of Time Step
Fig. 3 Deflection and axial displacement
for cross-ply partially supported
laminated plate with center
cutout
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Fig. 5 Bottom-middle cutout plate sample
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Fig. 6 Center cutout plate sample

The coordinate system and the boundary
conditions used for laminated plate with
cutouts are shown in Fig. 3-6.
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Fig. 7 Bottom-left corner cutout plate sample

6.0

@ Load was removed st Time Btep = mo]
— Losd was a1Yime Step = 10

Defiaction (cm }
i I S T B R N

40 80 80 100

®
~
©

Numberot Time Step

Fig. 8 Deflection for partially supported
laminated plate with cutout (middie)
under heavyside step loading

§ = 0/90 . a/h = 20
4 0/90 , a/h x 19

Deflection ( cm )

Fig. 9 Effect of plate side to thickness ratio
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Fig.7-Fig.9 shows transverse deflections
(at x=24 c¢cm and y=16 cm). In Fig. 3,
the axial displacement u( at x=44 c¢m and
y=40 cm) for the partially supported
laminated plate with cutouts as function
of time is also presented.

Fig. 8 shows the transient responses for
the partially supported laminated plate
with cutouts when the applied load was
removed at time step=10. Since no damping
is accounted for in the present model, the
solutions do not decay with time. Fig. 9
shows the transient response of a
two-layer cross-ply partially supported
laminated plate with cutouts. It can
be seen that the period decreases with
increasing values of thickness of the
plate. Fig. 10 shows the transient
response of a two-layers lamination
angle(0/90) and all edge fixed supported
laminated plate with cutouts. It can
be seen that the

deflections (at x=24 cm and y=16 c¢m) of

maximum transverse

bottom~middle cutout plate is nearly two
times that of center cutout plate. The
position of cutout is significant effect on

Deftection ( cm )
b
I I

o.0 -4 —@— Cutovt(middie )
—&— Cutout(corner)

badp—  Cutout { center)

1.0~ I T T 1 s e ;

[} 20 80 100

a0 80
Number of Time Step

Fig. 10 Deflection of plate (0/90) with three
type cutouts
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=@~ Cutout (middie )
———lr—e  Cutout{corner)
=== Cutout (center)

Deflection ( cm )

0 20 40 80
Number of Time Step

Fig. 11 Deflection of plate (45/-45) with three
type cutouts

maximum transverse deflections.

Fig. 11 shows the transient response
of a two-layer antisymmetric angle-ply
(45/-45) "and all edge fixed supported
laminated plate with cutouts. The
maximum transverse deflections (at x=24
cm and y=16 cm) of bottom-middle cutout
plate is high by 80 percent for a center
cutout plate. As noted previously, the
position of cutout is extremely important
in maximum transverse deflections.

Fig. 12 shows the transient response of
a two-layers lamination angle(0/90)
and (45/-45), all edge fixed supported

3.0

Deflection { cm )

N wsfous  Cutout ( center ) : 85/-48
~4— Cutout (center): 0/90

1.0 T T T T T T ¥ T T
0 20 [1] 100

“0 60
Numberof Time Step

Fig. 12 Deflection of two layers plate different
lamination angle
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laminated plate with center cutouts.

It can be seen that the maximum
transverse deflections (at x=24 cm and
y=16 cm) of (45/-45) lamination is high
by 16 percent that of (0/90) lamination
angle plate and (45/-45) lamination plate
has a period of vibration 6.5 percent
larger than the (0/90) lamination plate.
Nevertheless, it is apparent that angle
of lamination is significant effect on
maximum transverse deflections and
period of vibration.

Fig. 13 shows the transient response of
different layer numbers in lamination
angle(0/90) with all edge fixed supported
laminated plate with center cutouts. The
maximum transverse deflections (at x=24
cm and y=16 c¢cm) of two layers plate is
higher by 56 percent that of eight layers
plate and period of vibration is lower by
17 percent. The effect of coupling between
bending and extension on the deflection is
significant effect in two layers plate and
the bending-extension coupling effect dies
out rapidly as the number of layers

increases.

we— Cutout{center): 5 layers

2.0 ~@— Cutout (center): 2 layers
: —t—— Cutout{center): 4 layers

Deflection (cm )

40 [1] a0 100
Number of Time Step

Fig. 13 Deflection of center cutouts plate by
layer numbers.
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Deflection (cm )

40 80
Numberof Time Step

Fig. 14 Deflection of 8-layers plate(0/90) with
three type cutouts

Fig. 14 shows the transient response of
a eight-layers lamination angle (0/90/0/
90/0/90/0/90) with three fixed edge and
one free edge laminated plate with
cutouts.

The maximum transverse deflections (at
x=24 cm and y=16 cm) of bottom-middle
cutout plate is high by 122 percent that
of center cutout plate. As noted previously,
the position of cutout is extremely

important in transient response.

5. Conclusions

Transient responses of partially supported
laminated composite plates with cutouts
have been estimated by employing the
first-order shear deformation theory and
finite element technique. The present
results for isotropic plates are shown to
be very close agreement to the other finite
element solutions available in the
literature.

The position of cutout is extremely
important in transient responses behavior.
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The coupling between the extension and
bending has a noticeable influence on the
response of the laminated composite plate
and the period decreases with increasing
values of thickness of the laminated
composite plate and the effect of coupling
is significant effect at two layers
laminated plate and the bending-extension
coupling effect dies out rapidly as the
number of layers increases.

The influence of cutouts on transient
response as a function of thickness ratio
is more significant for thinner plate.
Current and future investigations on this
subject should be directed to forced
vibration and impulse loadings in composite
plates with damping included.

The information presented should be
useful to composite-structure designers, to
researchers seeking to obtain Dbetter
correlation between theory and experiment
and to numerical analysts in checking out

their programs.
ZAtel &
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