• Title/Summary/Keyword: 복합축 시험 모드

Search Result 5, Processing Time 0.022 seconds

Improvement of Durability and Reliability by Developing a Bi-axial Test Process of Road Wheel (차량 로드 휠의 복합축 평가 프로세스 구축을 통한 내구신뢰성 강건화 및 주행안정성 향상)

  • Chung, Soo Sik;Yoo, Yoen Sang;Kim, Dae Sung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • The steel road wheel on ventilation holes was cracked in the vehicle durability test. But the component durability test by uni-axial, CFT(Cornering Fatigue Test) and RFT(Radial Fatigue Test) had been satisfied. That is, the uni-axial component test could not forecast the crack of vehicle. Therefore this study developed the bi-axial test mode to reflect a vehicle condition(to reflect both vertical and lateral force simultaneously) based on real load data which was measured in Europe and China and developed CAE simulation too. It reproduced the cracks same as vehicle's and verified by bi-axial test machine in the LBF(Fraunhofer Institute for Structural Durability and System Reliability) durability research center in Germany. Finally this the durability CAE simulation by using HMC(Hyundai Motor Company)'s the bi-axial test mode predicts feasibly the steel wheel's durability performance before vehicle durability test.

A Study on the energy absorption characteristics of GFRP circular tubes fabricated by the filament winding method (필라멘트 와인딩 공법 GFRP 원형 튜브의 에너지 흡수특성에 관한 연구)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2009
  • In this paper, quasi-static crushing tests of composite circular tubes under axial compression load are conducted to investigate the energy absorption characteristics. Circular tubes used for this experiment are glass/epoxy (GFRP) composite tubes which are fabricated by the filament winding method. One edge of the composite tube is chamfered to reduce the initial peak load and to prevent catastrophic failure during crushing process. Energy absorption characteristics vary significantly according to the constituent materials, fabrication conditions, tube geometry and test condition. In tube geometry, according as inner diameter increase, unstable crush mode is caused by local buckling of delamination, but control of the fiber orientation should help composite tubes get stable crush mode.

Design and Fabrication of a 2-Axis Waveguide Rotary Joint for a Millimeter-wave (Ka-Band) Multi-Mode Seeker with Low VSWR and Insertion Loss (낮은 정재파비와 삽입손실을 갖는 밀리미터파(Ka 밴드) 복합모드 탐색기용 2-축 도파관 로터리 조인트 설계 및 제작)

  • Song, Sung-Chan;Yoo, Sung-Ryong;Lim, Ju-Hyun;Jung, Yong-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.173-176
    • /
    • 2019
  • In this study, a Ka-band waveguide rotary joint that can be applied to a millimeter-wave seeker is designed and fabricated. The proposed rotary joint maintains a low standing-wave ratio and low-loss characteristics, and has two rotary axes designed to enable azimuth and elevation rotation. The rotary joint is designed as a ridge-waveguide-type mode converter and a ${\lambda}/4$ choke structure to match the electromagnetic wave propagation mode between the spherical and circular waveguides. A performance test using a network analyzer and a high-power transmitter to assess vibration and shock were conducted. Results showed that the rotary joint had a very low standing-wave ratio of less than the maximum of 1.19:1 and an insertion loss of less than 0.80 dB at $F_C{\pm}500MHz$.

Bending Performances and Collapse Mechanisms of Light-weight Aluminum-GERP Hybrid Square Tube Beams (경량화 알루미늄-GFRP 혼성 사각관 보의 굽힘성능 및 붕괴 메커니즘)

  • Lee, Sung-Hyuk;Kim, Hyung-Jin;Chang, Young-Wook;Choi, Nak-Sam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.8-16
    • /
    • 2007
  • Bending collapse of light-weight square tubes used for vehicle structure components is a dominant failure mode in oblique collision and rollover of vehicles. In this paper bending performances of aluminum-GFRP hybrid tube beams were evaluated in relation with bending deformation behavior and energy absorption characteristics. Aluminum/GFRP hybrid tube beams fabricated by inserting adhesive film between prepreg and metal layer were used in the bending test. Failure mechanisms of hybrid tubes under a bending load were experimentally investigated to analyze the bending performance as a function of ply orientation and composite layer thickness. Ultimate bending moments and energy absorption capacity of hybrid tube beams were obtained from the measured load-displacement corves. It was found that aluminum/GFRP hybrid tubes could be converted to rather stable collapse mode showing excellent energy absorption capacity in comparison to the pure aluminum tube beams. In particular, the hybrid tube beam with $[0^{\circ}/90^{\circ}]s$ composite layer showed a large improvement by about 78% in energy absorption capacity and by 29% in specific energy absorption.

Bending Performance of Glulam Beams Reinforced with Carbon Fiber-Reinforced Plastics Bonded with Polyvinyl Acetate-Based Adhesive (초산비닐수지계 접착제를 사용한 탄소섬유강화플라스틱 복합집성재의 휨 성능)

  • Park, Jun-Chul;Shin, Yoon-Jong;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.364-371
    • /
    • 2009
  • This study was carried out to investigate the bending strength of the Larix glulam beams which were reinforced with CFRP (Carbon fiber reinforced plastic) of which the reinforcement ratios were 0.7% and 2.1% by volume. In the bending test, the rupture shape of the reinforced glulam shows that the reinforced glulam broke firstly in the lowest bottom layer on which tension was loaded, but did not in the upper part reinforced with the CFRP layer. The upper part of the reinforced layer kept strength and did not break when the reinforced glulam broke firstly at the bottom part of the reinforced layer, but broke secondly as loading was increased. In the glulam beams reinforced with CFRP of which the reinforcement ratio was 0.7% by volume, the bending strength of the reinforced beams was increased by 28% at the first break. When beams broke up to the upper part of the reinforced layer, the bending strength of the reinforced beams was increased by 55%, compared to those of control glulam beams. When the glulam beams were reinforced with CFRP of which the reinforcement ratio was 2.1% by volume, the bending strength of the reinforced beams was increased by 77%, compared to those of control glulam beams. The ratio of the height of calculated neutral axis using failure mode recommended by Romani and the height of actual neutral axis using strain gauge was 1.03 and agreed well.