• Title/Summary/Keyword: 복합지구물리탐사

Search Result 84, Processing Time 0.025 seconds

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

Application of Mutiple Geophysical Methods in Investigating the Lava Tunnel of Manjanggul in Cheju Island (제주도 만장굴에 대한 복합 지구물리탐사 기법의 적용)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Oh, Seok-Hoon;Lee, Chun-Ki
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.535-545
    • /
    • 1998
  • Various geophysical methods have been applied to the survey of the lava tunnel of Manjanggul in Cheju Island to study the effectiveness of each method in investigating underground tunnels. The surveys employing gravity, magnetic, electrical, AMT and VLF methods were carried out along seven profiles across the Manjanggul; especially, all the five methods were used on one representative profile. Several aspects of different methods pertinent to their use in investigation of underground tunnels have been noted. The electrical method employing the dipole-dipole array appeared to be the most effective one among five methods. Therefore, we have tested the electrical method more carefully by using various electrode spacings, and obtained successful resistivity sections showing the existence of lava tunnels. The gravity method provided relatively successful responses associated with the tunnel although the gravity readings were contaminated by wind blowing during the survey. The gravity data were also useful for the quantitative modeling study. The magnetic data were also successful in delineating the tunnel qualitatively. The AMT data were not successful because the used frequency band was not appropriate in detecting very shallow target. The VLF data were severely influenced by the neighboring noise sources such as power lines and were not successful in detecting the tunnel responses. The comprehensive result of electrical, gravity and magnetic surveys suggests that undiscovered lava tunnels may exist adjacent to the Manjanggul.

  • PDF

Monitoring of Shoreline Change using Satellite Imagery and Aerial Photograph : For the Jukbyeon, Uljin (위성영상 및 항공사진을 이용한 해안선 변화 모니터링 : 울진군 죽변면 연안을 대상으로)

  • Eom, Jin-Ah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.571-580
    • /
    • 2010
  • Coastal shoreline movement due to erosion and deposition is a major concern for coastal zone management. Shoreline is changed by nature factor or development of coastal. Change of shoreline is threatening marine environment and destroying. Therefore, we need monitoring of shoreline change with time series analysis for coastal zone management. In this study, we analyzed the shoreline change using airphotograph, LiDAR and satellite imagery from 1971 to 2009 in Uljin, Gyeongbuk, Korea. As a result, shoreline near of the nuclear power plant show linear pattern in 1971 and 1980, however the pattern of shoreline is changed after 2000. As a result of long-term monitoring, shoreline pattern near of the nuclear power plant is changed by erosion toward sea. The pattern of shoreline near of KORDI until 2003 is changed due to deposition toward sea, but the new pattern toward land is developed by erosion from 2003 to 2009. The shoreline is changed by many factors. However, we will guess that change of shoreline within study area is due to construction of nuclear power plant. In the future work, we need sedimentary and physical studies.

Precision Verification of New Global Gravitational Model Using GPS/Leveling Data (GPS/Leveling 자료를 이용한 최신 전지구중력장 모델의 정밀도 검증)

  • Baek, Kyeongmin;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.3
    • /
    • pp.239-247
    • /
    • 2013
  • The global gravitational model is essential for precision geoid model construction. Also, it would be used as basic scientific data in geophysical and oceanographic fields. In Korea, EGM2008 has been used from the late 2000s. After publishing EGM2008, new gravitational models such as GOCO02S, GOCO03S, EIGEN-6C, EIGEN-6C2 based on GOCE data were developed. Therefore, we need to verify recent models to select optimal one for geoid computation in Korea. In this study, we compared new models generated based on the GOCE data to EGM2008 and verified the precision of models by comparing with NGII(National Geographic Information Institute) GPS/Leveling data. When comparing EIGEN models to EGM2008, the difference is about 8cm. On the other h and, about 70cm of difference between GOCO models and EGM2008 has been calculated. The reason for this is because GOCO models have been developed using only satellite data while EGM2008 has been used gravity and altimeter data as well as satellite data. When comparing global gravitational model to GPS/Leveling data, EGM2008 showed the best precision of 6.1cm over whole Korean peninsula. The new global gravitational model using additional GOCE data will be published consistently, so the precision verification of new model should be continued.