• Title/Summary/Keyword: 복합주조

Search Result 186, Processing Time 0.024 seconds

Numerical Simulation of Infiltration and Solidification for Squeeze Casting of MMCs (가압주조법을 이용한 금속복합재료 제조공정의 침투와 열전달 해석)

  • Jung C.K.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.250-253
    • /
    • 2004
  • A finite element model is developed for the process of squeeze casting of metal matrix composites. The fluid flow and the heat transfer are fundamental phenomena in squeeze casting. The equations for the clear fluid flow and the flow in porous media are used to simulate the transient metal flow. To describe heat transfer in the solidification of molten aluminum, the energy equation is written in terms of temperature and enthalpy. A direct iteration technique is used to solve the resulting nonlinear algebraic equations. The cooling curves and temperature distribution during infiltration and solidification were calculated for a simplified model with pure aluminum. The developed program can be used for squeeze casting process of complex geometry, boundary conditions and processing parameter optimization.

  • PDF

A Study on the Protecting Wall for Transferring Pipe of Waste Using Cast Basalt Tube (용융주조 현무암 튜브를 이용한 생활폐기물 이송관로의 보호벽에 관한 연구)

  • Wang, Jee-Seok;Kim, Jong-Do;Yoon, Hee-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.816-824
    • /
    • 2010
  • The forces applying to an object in the transferring pipe of waste are analyzed and the equation of motion is established in this paper. It is shown that the equation of motion becomes the 1st order non-linear differential equation. Using its general solution, the velocity of the object in the transferring pipe of waste can be expressed in the explicit form. Noting that the velocity of object is impact velocity to the elbow or curved part of the transferring pipe of waste, the kinetic energy of the object can be calculated and the necessary impact strength of inner wall is obtained. The velocity of object is also calculated and presented in the graphic forms with the condition of air velocity 30m/sec. The impact test of cast basalt tube is carried out by the free fall of a weight and the test results show that the impact strength of the cast basalt tube is sufficient to apply to protecting inner wall of the transferring pipe of waste.

Casting Technology of an Aluminum Alloy Composite Brake Disc (알루미늄 복합재 제동디스크 주조 기술 개발)

  • Goo, Byeong-Choon;Kim, Myung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.971-974
    • /
    • 2011
  • Aluminum matrix composites reinforced with SiC particles(AMC) are one of the candidate materials for the weight reduction of rolling stock brake discs. It is known that weight reduction of about 40% is possible when they replace conventional cast iron brake discs. But casting is not easy because of bad wettability of SiC with Al alloy. We developed two AMC brake discs with SiC volume fraction of 20% by a new casting method. It was found the developed method produced brake discs of good quality.

  • PDF

Improvement of Fatigue Life and Vibrational Characteristics of Composite Material Propeller Shaft of Vehicle (수송기계용 복합재료 추진축의 피로수명 및 진동특성 향상에 관한 연구)

  • 공창덕;정진호;정종철;김기범
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.104-117
    • /
    • 1999
  • The Composite materials has been used in the field of high technology industry because of high specific stiffness and high specific strength. Specially, the composite materials has been widely applied to the field of the aircraft and the transportation by the effectiveness of light weight due to low specific weight and reduction of the parts due to bonding, molding and so on. These advantages about the composite have led to study and apply in the transmission shaft for the aircraft and the drive shaft for the automobile. The composite material propeller shaft with the high vibrational stability was designed and analyzed. In order to verify the analysis, two types of experimental test which are the FFT analyzer with impact hammer and the rotational equipment were applied.

  • PDF

Hybrid 3D Printing and Casting Manufacturing Process for Fabrication of Smart Soft Composite Actuators (지능형 연성 복합재 구동기 제작을 위한 3D 프린팅-캐스팅 복합 공정)

  • Kim, Min-Soo;Song, Sung-Hyuk;Kim, Hyung-Il;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Intricate deflection requires many conventional actuators (motors, pistons etc.), which can be financially and spatially wasteful. Novel smart soft composite (SSC) actuators have been suggested, but fabrication complexity restricts their widespread use as general-purpose actuators. In this study, a hybrid manufacturing process comprising 3-D printing and casting was developed for automated fabrication of SSC actuators with $200{\mu}m$ precision, using a 3-D printer (3DISON, ROKIT), a simple polymer mixer, and a compressor controller. A method to improve precision is suggested, and the design compensates for deposition and backlash errors (maximum, $170{\mu}m$). A suitable flow rate and tool path are suggested for the polymer casting process. The equipment and process costs proposed here are lower than those of existing 3D printers for a multi-material deposition system and the technique has $200{\mu}m$ precision, which is suitable for fabrication of SSC actuators.

Manufacture and Mechanical Properties of $ABO_w/AC4CH$ Composite Material ($ABO_w/AC4CH$복합재료의 제조 및 기계적 특성)

  • 허선철;박원조;허정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.188-194
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potential for demanding mechanical applications including defense, aerospace, and automotive industries. Especially, metal matrix composites, which are reinforced with aluminum borate whisker, have been used for the part of piston head in automobile because of good specific strength and wear resistance. Aluminum alloy-based metal matrix composites with whisker reinforcements have been produced using squeeze casting method, which is kind of an infiltration method. In this study, AC4CH-based metal matrix composites with $Al_{18}B$_4$O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated mechanical properties of matrix and MMC composite were evaluated.

  • PDF

Fatigue Strength Characteristic of Metal Matrix Composite Material in $9Al_2\;.\;2B_2O_4$/ AC4CH ($9Al_2\;.\;2B_2O_4$/ AC4CH 금속기 복합재료의 피로강도 특성)

  • Park, Won-Jo;Lee, Kwang-Young;Huh, Sun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1583-1589
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potentials for demanding mechanical applications including defense, aerospace, and automotive industries. Especially metal matrix composites, which are reinforced with aluminum borate whisker, have been used leer the part of piston head in automobile because of good specific strength and wear resistance. In this study, AC4CH-based metal matrix composites with $Al_{18}$B$_{4}$ $O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated fatigue life property of matrix and MMC composite and investigated fracture mechanism.m.

Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact (저속 충격하에서의 금속복합재료의 동적 특성)

  • ;Gamal A. Aggag;K.Takahashi
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study has observed that the dynamic behavior of Metal Matrix Composites (MMCs) in low velocity impact varies with impact velocity. MMCs with 15 fiber volume percent were fabricated by using the squeeze casting method. The AC8A was used as the matrix, and the alumina and the carbon were used as reinforcements. The tensile and vibration tests conducted yielded the yielded the tensile stress and elastic modulus of MMCs The low pass filter and instrumented impact test machine was adopted to study dynamic behaviors of MMCs corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact energy of unreinforced alloy and MM s increased as the impact velocity increased. The increase of crack propagation energy was especially prominent, but the dynamic toughness of each material did not change much. To show the relation between crack initiation energy and dynamic fracture toughness, a simple model was proposed by using the strain energy and stress distribution at notch. The model revealed that crack initiation energy is proportional to the square of dynamic fracture toughness and inversely proportional to elastic modulus.

  • PDF

The Research of Commercial HTPB Polymer Binder Characteristics for Castable Plastic Bonded Explosive (주조형 복합화약용 HTPB 고분자 바인더의 상용모델 특성연구)

  • Lee, Seung-Jae;Kim, Jae-Woo;Park, Jong-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.441-444
    • /
    • 2011
  • Type A and Type B and are commercial HTPB models, which are very popular prepolymer for polyurethane binder family. So the study has been performed on the physical, chemical characteristic of HTPB and viscosity, mechanical property of PBX-A applying to HTPB. But We excluded the Type A from Appication test, because of law Hydroxyl value. And in the case of Type B, Type B-1, 2 has mechanical disadvatage to apply to HTPB in the process comparing with B-3. It seems to make no problem if we change equivalence ratio or curing condition within standards. But if we are to apply process condition like R-45HT(US-sample), it would be essential to apply HTPB with higher Hydroxyl Value and hydroxyl Functionality.

  • PDF

A Comparative Study on the Cyclic Behavior and Fatigue Life of Cast and Extruded SiC -Particulate - Reinforced Al-Si Composites (주조 및 압출가공된 SiC입자강화 알루미늄복합재의 피로거동 및 피로수명에 대한 비교 연구)

  • Go, Seung-Gi;Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.777-785
    • /
    • 2000
  • The low-cycle fatigue behaviors of cast AI-Si alloy and composite with reinforcement of SIC particles were compared with those of extruded unreinforced matrix alloy and composite in order to investigate the influence of cast and extrusion processes on the cyclic deformation and fatigue life. Generally, both cast and extruded composites including the unreinforced alloy exhibited cyclic hardening behaviour, with more pronounced strain-hardening for the composites with a higher volume fraction of the SiC particles. However, cast composite under a low applied cyclic strain showing no observable plastic strain exhibited cyclic softening behavior due to the cast porosities. The elastic modulus and yield strength of the cast composite were found to be quite comparable to those of the extruded composite, however, the extrusion process considerably improved the ductility and fracture strength of the composite by effectively eliminating the cast porosities. Low-cycle fatigue lives of the cast alloy and composite were shorter than those of the extruded counterparts. Large difference in life between cast and extruded composites was attributed to the higher influence of the cast porosities on the fatigue life of the composite than that of the unreinforced alloy material. A fatigue damage parameter using strain energy density effectively represented the inferior life in the low-cycle regime and superior life in the high-cycle regime for the composite, compared to the unreinforced alloy.