• Title/Summary/Keyword: 복합주조

Search Result 186, Processing Time 0.022 seconds

Effects of Metal Coating on SiCp on Wettability and Interfacial Strength of Al/SiCp Composites (Al/SiCp 복합재료에서 보강재 표면의 금속 피복층이 젖음성과 계면 강도에 미치는 영향)

  • Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.360-367
    • /
    • 1995
  • Effects of metal coating treatment on SiC particle on wetting behavior and interfacial strength were studied. Experimental variables are included types of coated metallic films such as Cu and Ni-P, and temperatures of heat-treatment under vacuum. The experimental results concerning wetting phenomena of liquid Al on SiC, showed that coating treatment of metallic film on SiC particles remarkably improves the wetting behavior of liquid Al on SiC, especially in the case of Ni-P coating. The interfacial strength of Al/SiC composites made of coated SiC plate was higher than that of the composite with non-coated SiC plate although the coating treatment was not perfect.

  • PDF

Fabrication Development of Stainless Steel - cast Iron Dual Tube (스테인리스강-주철 이중복합관의 제조개발에 관한 연구)

  • Choi, Sang-Ho;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.429-436
    • /
    • 1988
  • The influences of some casting conditions on bonding ratio and state at bonding zone of stainless steel-cast iron dual tube produced by centrifugal casting process were investigated to estimate fabrication technics. 1) Bonding ratio is increasing such as increasing of inner surface temperature of outer metal(stainless steel STS 304), if pouring temperature of inner metal (cast iron) is constant. 2) The more pouring temperature of inner metal (cast iron) increase, the more bonding ratio increase when inner surface temperature of outer metal (cast iron) is constant. 3) As the mold rotary speed is increase, the hatching area of bonding map (perfect bonding area) goes down to the low pouring temperature of inner metal. 4) In order to predict bonding state of two different metal, we are able to make and use the bonding map about casting conditions such as inner surface temperature of outer metal, pouring temperature of inner metal and mold rotary speed.

  • PDF

Unidirectional Solidification of $Al-CuAl_2$ Eutectic Composites under Forced Convection by Vibration (진동하에서 일방향응고 시킨 $Al-CuAl_2$ 공정복합재료의 응고에 관한 연구)

  • Lee, Hyun-Kyu;Lee, Kil-Hong
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.234-239
    • /
    • 1998
  • Unidirectional solidification of $Al-CuAl_2$ eutectic composites was studied under the condition of forced convection by vibration. It has been shown that thermal gradient for solid is different from that for liquid during solidification under force convection by vibration. With increase of vibration, mobility of liquid increases, but decreases with decreasing vibration. The rate of solidification is very high initially, and decreases suddenly. For further solidification, the rate of solidification decrceases slowly, and shows a L-type behavior. The mechanical vibration during solidification effects efficiently on nucleation, and induces a forced convection in liquid. By the forced convection, great thermal gradient of liquid interface between solid and liquid can be obtained. The amount of solute near the interface also decreases as solute distribution is improved by the forced convection.

  • PDF

Mechanical Properties of High Strength Aluminum Alloy Composites Reinforced by SiC Particulates (SiC 입자로 분산 강화된 고력 알루미늄 합금 복합재료의 기계적 성질)

  • Lee, Eui-Gil;Choi, Woon;Nam, Seung-Eui
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.164-169
    • /
    • 1997
  • Mechanical properties of aluminum-matrix composites, fabricated by dispersion of fine SiC particulates of which size was less than 1 ${\mu}m$ into 2024 and 7075 aluminum alloys, have been investigated. Homogeneous mixing between the matrix and SiC particulates could be achieved by jar milling for 8 hours with appropriate processing agent. At temperatures below 473K, high-temperature tensile strength of the composites was higher than that of the 2024 and 7075 aluminum alloys which were used as matrix materials. However, tensile strength of the composites was approximated to that of the matrix materials at 573K. Thus, it could be suggested that effects of particle dispersion on tensile strength of aluminum alloys was diminished at temperatures higher than 573K.

  • PDF

Effects of Zn, Zr Addition on Microstructures and Hardness of Mg/SiCp Composites Fabricated by Rheo-Compocasting (Rheo-Compocasting법으로 제조한 Mg/SiCp 복합재료의 조직 및 경도 특성에 미치는 Zn, Zr 첨가의 영향)

  • Hong, Sung-Kil;Choe, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.588-595
    • /
    • 1995
  • SiC particles reinforced Mg-Zr, Mg-Zn and Mg-Zn-Zr composites were manufactured by Rheocompocasting method. Effects of Zn, Zr addition on microstructures and hardness were investigated by using the micro Vickers hardness tester, the optical and scanning electron microscopy. By the Zr addition to the pureMg/SiCp composites, SiC particles become more homogeneously dispersed and grain refined so that the micro hardness of the composite increased. In case of Zn addition, although grain refinement and homogeneous dispersion effects of SiC particles were not obtained, hardness was more increased than the only Zr added composite by the formation of many Mg-Zn intermetallic compounds at grain boundary. In the Mg-Zn-Zr/SiCp composite, the highest value of hardness was obtained by triple effects such as grain refining, dispersion hardening of SiC particles and Mg-Zn compounds.

  • PDF

Interfacial Characteristics of $Al-2024/Al_2O_{3p}$ Composite Fabricated by Rheo-compocasting (Rheo-compocasting법으로 제조된 알루미나 입자강화 Al합금 복합재료의 계면반응)

  • Hyun, Suhk-Jong;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.285-294
    • /
    • 1993
  • Aluminum alloy 2024 matrix composites reinforced with $Al_2O_3$ particles, were prepared by rheo-compocasting, a process which consists of the incoporation distribution of reinforcement by stirring within a semi-solid alloy. The microstructures and characteristics of the interfaces have been studied using optical microscope and scanning electon microscope in 2024 aluminum alloy composites reinforced with $Al_2O_3$ particles. The main results are as follows: (1) $Al_2O_3$ particles were well distributed in composites by using rheo-compocasting. (2) As the addition of $Al_2O_3$ particle increases, the average dendrite numbers and the hardness were increased. (3) Interaction between $Al_2O_3$ particles and alloy 2024 resulted in the formation of Mg and Cu element rich region around the $Al_2O_3$ particles.

  • PDF

A Study on Development of High Strength and Wear Resistance Intermetallic Compounds/Al Matrix Composites (고강도 내마모 금속간화합물/Al기지 복합재료의 개발을 위한 기초연구)

  • Choi, Dap-Chun;Lee, Kyung-Ku;Lee, Ho-Jong;Ghi, Whe-Bong
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.276-284
    • /
    • 1993
  • The interfacial phenomena between intermetallic compounds and Al matrix have been studied at $680^{\circ}C$ for various holding time under argon atmosphere. Model experiments were performed using Fe, Ni and Ti wire to observe the interfacial phenomena. The interfacial phenomena between intermetallic compounds and Al matrix were analysed by optical microscope, SEM and EDX. The results of EDX and XRD showed that the interfacial zones of intermetallic compounds/Al matrix were composed of several intermetallic layers. The reaction layer was varied with holding time and heating temperature. The investigation of interfacial zones in the specimen as a function of heat treatment time at $680^{\circ}C$ indicated that the best heat treatment condition for squeeze casting was $680^{\circ}C$ for 5min.

  • PDF

Influence of Solidification Condition on the Segregation of SiC Particles in the Al-Si/$SiC_p$ Composites (Al-Si/$SiC_p$ 복합재료에서 SiC의 편석에 미치는 응고 조건의 영향)

  • Kim, Jong-Chan;Kwon, Hyuk-Moo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.180-187
    • /
    • 1997
  • The influence of solidification condition on the segregation of SiC particles in the $Al-xSi/6wt%SiC_p$(x: 6, 10, 14, 18${\cdot}$wt%) composites was investigated in the study. The results are as follows: 1) During the counter-gravity unidirectional solidification of $Al-Si/SiC_p$ composites melt, most of the SiC particles are pushed to the top of the casting. 2) The SiC particles pushing in the $Al-Si/SiC_p$ composite melts are not observed, when the interface velocity of melts increases more than 1.41 ${\mu}m/sec$. 3) The SiC particles are entrapped in the interdendrite regions, when the sizes of SiC particles in the $Al-Si/SiC_p$ composites are large than ${\varphi}22{\mu}m$.

  • PDF

The Study on the Unidirectionally Solidified $Al-CuAl_2$ Eutectic Composites;Effect of Vibration on the Lamellar Spacing and Fault Density (일방향 응고한 $Al-CuAl_2$ 공정복합재료에 관한 연구;층상간격과 결함밀도에 미치는 응고조건과 진동의 영향)

  • Lee, Kil-Hong;Lee, Hyun-Kyu
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.188-194
    • /
    • 1997
  • The effects of solidification condition and vibration on structure refinement were investigated for unidirectionally solidified $Al-CuAl_2$ eutectic composites. Eutectic composites were unidirectionally solidified under vibration with different growth rates (R) and thermal gradient(G). The lamellar structure was varied according to growth condition (G/R ratio). For the structure refinement the effect of G/R was found out to be greater than that of vibration. The interlamellar spacing(${\lambda}$) in this materials was varied with the growth rates(R) with "${\lambda}^2R$=Constant" relationship.

  • PDF

Characterization of the Ceramic Reinforced AC4C Matrix Composites Processed by Squeeze Casting (용탕단조법으로 제조된 AC4C 합금기 세라믹강화 복합재료의 특성연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.88-94
    • /
    • 2005
  • The microstructure and mechanical property of the ceramic reinforced AC4C matrix composites processed by squeeze casting were investigated. In this study Kaowool and Saffil fiber which are ceramic reinforcements are used as preform materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Kaowool and Saffil/AC4C composites, 7.5 MPa squeezing pressure and minimum 7.0% binder amount are needed to produce sound composite materials. The tensile strength of Kaowool/ AC4C composite is lower than the matrix metal and this can be explained by the melt unfilling due to formed cluster of Kaowool reinforcements. But the mechanical properties of hardness, wear resistance and thermal expansion are better than the matrix materials due to the strengthening effect of ceramic reinforcements.