• Title/Summary/Keyword: 복합적 해석

Search Result 2,036, Processing Time 0.033 seconds

Probabilistic Fiber Strength of Composite Pressure Vessel (복합재 압력용기의 확률 섬유 강도)

  • 황태경;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, probabilistic failure analysis based on Weibull distribution function is proposed to predict the fiber strength of composite pressure vessel. And, experimental tests were performed using fiber strand specimens, unidirectional laminate specimens and composite pressure vessels to confirm the volumetric size effect on the fiber strength. As an analytical method, the Weibull weakest link model and the sequential multi-step failure model are considered and mutually compared. The volumetric size effect shows the clearly observed tendency towards fiber strength degradation with increasing stressed volume. Good agreement of fiber strength distribution was shown between test data and predicted results for unidirectional laminate and hoop ply in pressure vessel. The site effect on fiber strength depends on material and processing factors, the reduction of fiber strength due to the stressed volume shows different values according to the variation of material and processing conditions.

Numerical Analysis of NDT Using Elastic Stress Waves in Concrete Lining (터널 라이닝내부에서 전파되는 탄성응력파를 이용한 수치해석적 비파괴검사)

  • 김문겸;이재영
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.187-198
    • /
    • 1998
  • 지하구조물의 건전성을 평가하기 위한 비파괴시험으로써 탄성응력파를 이용한 충격반향탐사법을 수치해석적인 방법을 통하여 수행하였다. 즉, 일면만으로 접근 가능한 터널 면에서의 충격가진과 동적응답의 측정으로 이질면을 포함한 내부의 상태를 예측할 수 있다. 연구의 수행은 탄성거동을 하는 매질 내부에서 전파되는 탄성응력파의 특성을 이해하고, 이를 동적 유한요소해석으로 모형화하여 충격반향탐사법을 수치해석적으로 수행한다. 이질재료가 2개의 층을 이루고 있는 경우 표면층의 두께를 쉽게 측정할 수 있었으며, 구조물의 병진운동, 휨운동과 구조물 내에서 다중반사되는 탄성응력파에 의한 복합적인 영향을 받는 터널과 같은 원통형 구조물에서 동적응답의 주파수 특성으로부터 터널라이닝 내부에 형성된 공동의 위치와 크기의 예측이 가능하였다. 수치해석적인 방법과 병행하여 다양한 형태의 경계조건을 가지는 구조물에 대한 충격반향탐사법의 실험을 수행할 경우 실제적인 문제에 적용, 건전성 평가의 지표를 마련할 수 있을 것으로 사료된다.

  • PDF

Elastoplastic Behavior and Progressive Damage of Circular Fiber-Reinforced Composites (원형섬유강화 복합재료의 탄소성거동 및 점진적 손상)

  • Lee, Haeng Ki;Kim, Bong Rae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.115-123
    • /
    • 2008
  • The performance prediction of fiber-reinforced composites has attracted engineer's attention in many fields, and the various theoretical and numerical methods have been proposed to predict the behavior of the fiber-reinforced composites. An evolutionary damage model for progressive interfacial debonding between circular fibers and the matrix is newly incorporated into the micromechanics-based elastoplastic model proposed by Ju and Zhang (2001) in this framework. Using the proposed model, a series of numerical simulations are conducted to illustrate the elastoplastic behavior and evolutionary damage of the framework. Furthermore, the influence of the evolutionary interfacial debonding on the behavior of the composites is investigated by comparing it with the result of a stationary damage model.

Finite Element Formulation Based on Enhanced First-order Shear Deformation Theory for Thermo-mechanical Analysis of Laminated Composite Structures (복합소재 적층 구조물에 대한 열-기계적 거동 예측을 위한 개선된 일차전단변형이론의 유한요소 정식화)

  • Jun-Sik Kim;Dae-Hyeon Na;Jang-Woo Han
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.117-125
    • /
    • 2023
  • This paper proposes a new finite element formulation based on enhanced first-order shear deformation theory including the transverse normal strain effect via the mixed formulation (EFSDTM-TN) for the effective thermo-mechanical analysis of laminated composite structures. The main objective of the EFSDTM-TN is to provide an accurate and efficient solution in describing the thermo-mechanical behavior of laminated composite structures by systematically establishing the relationship between two independent fields (displacement and transverse stress fields) via the mixed formulation. Another key feature is to consider the thermal strain effect without additional unknown variables by introducing a refined transverse displacement field. In the finite element formulation, an eight-node isoparametric plate element is newly developed to implement the advantage of the EFSDTM-TN. Numerical solutions for the thermo-mechanical behavior of laminated composite structures are compared with those available in the open literature to demonstrate the numerical performance of the proposed finite element model.

선체국부팬널의 진동해석

  • 한성용
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.33-35
    • /
    • 1994
  • 본 고에서는 선체국부팬널의 대종을 이루고있는 판요소, 보강판, 복판팬널 및 복합재료적층판의 진동특성을 구하는 근사방법으로서 주로 Rayleigh-Ritz방법을 적용한 연구결과들을 정리하였다. 이를 통해 향후 추가로 연구가 이루어져야 할 내용을 다음과 같이 도출하였다 1) 팬널주위의 경제조건으로서 탄성구속을 고려 할 수 있도록 정식화는 이루어져 있으나 실제 선체 팬널의 탄성구속도를 구하는 방법이 정립되어 잇지 못하기 때문에 해석결과의 정도 문제가 발생한다. 따라서 해석정도의 향상을 위해 실제 선체팬널의 탄성구속도에 대한 연구가 수행되 어야 하며, 이와 같은 연구는 조선소에서 이루어지는 것이 타당한 것으로 사료된다. 2) Mindlin 판, 복합판널, 복합재료적층판에 대한 정식화에서 경제조건이 회전방향탄성고속만 고려되고 힁방향 변위는 고정되어 자유와 단순지지 사이의 경제조건은 고려될 수 없으므오 이 에대한 보완 연구가 이루어져야 한다. 3) 본 고에서는 접수효과에 대한 연구결과의 소개는 없었으나, 이에대한 현재까지의 연구는 주로 평판에 대해 이루어졌다. 화물창내 국부판널 또는 이중저의 진동해석을 정도 노ㅍ게 수행하기 위해서는 보강판 및 복판팬널의 접수효과에 대한 연구가 적극적으로 이루어져야 한다.

  • PDF

Development of the Piecewisely-integrated Composite Bumper Beam Based on the IIHS Crash Analysis (IIHS 충격해석에 근거한 구간 조합 복합재료 범퍼 빔 개발)

  • Jeong, Chan-Hee;Ham, Seok-Wu;Kim, Gyeong-Seok;Cheon, Seong S.
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.37-41
    • /
    • 2018
  • The aim of the current work is to characterise a piecewisely-integrated composite bumper beam based on the IIHS bumper crash protocol. IIHS bumper crash FE analysis for an aluminium type bumper beam was carried out to get the information about the dominant loading types at several regions in the bumper beam during crash. In the meantime, robust stacking sequences against tension and compression have been searched for using FE analysis of a coupon type model. After determining most effective stacking sequences for tension and compression, three-point bending simulation was preliminarily carried out to investigate the combination performance of them. Finally, IIHS bumper crash FE analysis for the piecewisely-integrated composite bumper beam, which consisted of the combination of tension effective stacking sequence and compression efficacious stacking sequence, was conducted and the result was compared with other types of composite bumper beams. It was found that the newly suggested piecewisely-integrated composite bumper beam showed superior crashworthy behaviour to those of uni-modal stacking sequence composite bumper beams.

Prediction and Evaluation of Progressive Failure Behavior of CFRP using Crack Band Model Based Damage Variable (Crack Band Model 기반 손상변수를 이용한 탄소섬유강화 복합재료 적층판의 점진적 파손 거동 예측 및 검증)

  • Yoon, Donghyun;Kim, Sangdeok;Kim, Jaehoon;Doh, Youngdae
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • In this paper, a progressive failure analysis method was developed using the Hashin failure criterion and crack band model. Using the failure criterion, the failure initiation was evaluated. If the failure initiation is occurred, the damage variables at each failure modes (fiber tension & compression, matrix tension & compression) was calculated according to linear softening degradation behavior and the variables are used to derive the damaged stiffness matrix. The damaged stiffness matrix is reflected to damaged material and the progressive failure analysis is continued until the damage variables to be 1 that complete failure of material. A series of processes were performed using FE commercial code ABAQUS with user defined material subroutine (UMAT). To evaluate the proposed progressive failure model, the experimental results of open hole composite laminate tests was compared with numerical result. Using digital image correlation system, the strain behavior also was compared. The proposed numerical results were coincided well with the experimental results.

Viscoelastic Bending, Vibration and Buckling Analysis of Laminated Composite Plates on Two-parameter Elastic Foundation (2개 매개변수를 갖는 탄성지반위에 놓인 복합재료 적층판의 점탄성적 휨, 진동 좌굴해석)

  • Han, SungCheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.443-455
    • /
    • 2001
  • An energy method has been used for an elastic formulation of bending vibration and buckling analysis of laminated composite plates on two-parameter elastic foundations. A quasi-elastic method is used for the solution of viscoelastic analysis of the laminated composite plates. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported orthotropic plates on elastic foundations are compared with those of LUSAS program Numerical results of the viscoelastic bending vibration and buckling analysis are presented to show the effects of layup sequence number of layers material anisotropy and shear modulus of foundations.

  • PDF

A Simple and Accurate Analysis of Two Dimensional Concrete Slab for a Railroad Bridge by the Composite Laminates Plate Theory (복합적층판 이론에 의한 2차원 콘크리트 슬래브 철도교량의 정확하고 간단한 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.20-25
    • /
    • 2011
  • In this paper, two dimensional concrete slabs for a railroad bridge were analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}$ = 0, and $D_{16}=D_{26}=0$ Bridge deck behaves as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis.

Analytical Modelling of Column-Type Hybrid Damper and Seismic Rehabilitation of Existing Buildings (기둥 복합댐퍼의 해석모델 구축 및 기존 건축물에 대한 내진보강 효과분석)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Cho, Hae-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.285-288
    • /
    • 2008
  • Analytical studies are performed to evaluate the feasibility of column-type hybrid damper for seismic rehabilitation of existing buildings. For this purpose, at first, analytical model which can simulate the hysteretic behavior of column-type hybrid damper is proposed for use of commercially-available structural analysis program (MIDAS). Also seismic rehabilitation effects by column-type hybrid damper were evaluated by time history analysis for the existing building with vertical extension. From the analysis, it was found that base shear of typical building is reduced about 20% and story drift was reduced around 20% at critical story.

  • PDF