• Title/Summary/Keyword: 복합재 제작공정

Search Result 119, Processing Time 0.025 seconds

Manufacturing Processes of Cylindrical Composite Lattice Structures using Filament Winding Method (필라멘트 와인딩 공법을 이용한 원통형 복합재 격자구조체 제작 공정)

  • Im, Jaemoon;Shin, Kwangbok;Lee, Sangwoo;Son, Johwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.835-837
    • /
    • 2017
  • In this paper, manufacturing processes of cylindrical composite lattice structures using filament winding method was described. Cylindrical composite lattice structures were manufactured in accordance with four major steps. Silicon mold of lattice shape was installed on mandrel and then continuous fiber was wound on silicon mold. After winding process, in order to ensure the same thickness for all regions, compression process was done for its intersection parts. Finally, the composite lattice structure was demoulded after curing in oven. It was found that the manufactured cylindrical composites lattice structure had 2.4% of dimensional error compared to the design requirements.

  • PDF

Evaluation of Multi-axis Robotic Manufactured Thermoplastic Composite Structure Using Stamp-forming Process (다관절 로봇 암 기반 고속 열 성형 공정을 활용한 열가소성 복합재 부품 평가)

  • Ho-Young Shin;Ji-Sub Noh;Gyu-Beom Park;Chang-Min Seok;Jin-Hwe Kweon;Byeong-Su Kwak;Young-Woo Nam
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.321-328
    • /
    • 2023
  • This study developed the in-situ stamp-forming process using the multi-axis robotic arm to fabricate thermal composite parts. Optimal fabrication parameters with the multi-axis robotic arm were determined using finite element analysis and these parameters were further refined through the practical manufacturing process. A comparison between the manufactured parts and finite element analysis results was conducted regarding thickness uniformity and wrinkle distribution to confirm the validity of the finite element analysis. Additionally, to evaluate the formability of the manufactured composite parts, measurements of crystallinity and porosity were taken. Consequently, this study establishes the feasibility of the In-situ stamp-forming consolidation using a robotic arm and verifies the potential for producing composite parts through this process.

Mechanical Properties for Processing Parameters of Thermoplastic Composite Using Automated Fiber Placement (자동 섬유 적층(AFP)을 활용한 열가소성 복합재의 공정 변수에 따른 기계적 물성 평가)

  • Sung, Jung-Won;Choe, Hyeon-Seok;Kwon, Bo-Seong;Oh, Se-Woon;Lee, Sang-Min;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.229-236
    • /
    • 2019
  • In this study, the effects of the additional processing parameters on the mechanical properties of thermoplastic composites fabricated with automated fiber placement (AFP) were evaluated. Annealing and vacuum bag only processes were then performed on the manufactured thermoplastic composites, respectively. For verification, the crystallinity was measured by differential scanning calorimetry (DSC), confirming the variation of semi-crystalline thermoplastic composite according to the process conditions. The void content of thermoplastic composites was evaluated by matrix digestion method while microscopic examination confirmed the porosity distribution. The interlaminar shear strength test was conducted for three different process parameters (VBO, annealing, and no treatment). A comparison of the three tested strengths was made, revealing that the porosity value had larger effect on the mechanical properties of the thermoplastic composite compared to the degree of crystallinity. Additionally, when thermoplastic composite melted up, the pores were continuously removed under vacuum process; the removal of the pores resulted in an increase of the interlaminar shear strength.

Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조공정과 층간전단강도)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been widely investigated as reinforcements of CNT/polymer nanocomposites to enhance mechanical and electrical properties of polymer matrices since their discovery in the early 90's. Furthermore, the number of studies about incorporating CNTs into carbon fiber reinforced plastics (CFRP) to reinforce their polymer matrices is increasing recently. In this study, single-walled carbon nanotubes (SWNT) were dispersed in epoxy with 0.2 wt.% and 0.5 wt.%. Then, the SWNT/epoxy mixtures were processed to carbon fiber composites by a vacuum assisted resin transfer molding (VARTM) and a wet lay up method. The processed composite samples were tested for the interlaminar shear strength (ILSS). The relationship between the interlaminar shear strengths and processing, and the reinforcement mechanism of carbon nanotubes were investigated. CNT/epoxy nanocomposite specimens showed the increased tensile properties. However, the ILSS of carbon fiber composites was not enhanced by reinforcing the matrix with CNTs because of processing issues caused by increased viscosity of the matrix due to addition of CNTs particularly for a VARTM method.

복합재 로켓 모타 케이스의 개발현황과 과제

  • Jo, Won-Man
    • Defense and Technology
    • /
    • no.9 s.163
    • /
    • pp.38-45
    • /
    • 1992
  • 유도탄의 사정거리, payload 증가를 위해 로켓모타의 경량화가 필수 조건이므로, 이미 1950년대부터 선진 외국에서는 금속재에 비해 무게 경감이 가능한 복합재 로켓 모타 케이스가 연구 개발되어 왔으며, 적용이 점점 증가 추세에 있습니다. 또한 현재 국내에서도 무게 경량화가 충족되는 인공위성 발사체, 유도탄의 모타 케이스의 개발이 강력히 요구되는 실정입니다. 그러나 복합재 모타 케이스는 금속재 케이스와는 소재, 설계/해석, 제작공정, 품질/시험 평가등에 대해 매우 다르고 용이하지 않으므로, 이에 대한 현재까지의 선진 외국기술을 분석해 향후 국내 개발에서 연구, 보완되어야 할 분야를 정리 보고 하였습니다

  • PDF

Fabrication and Evaluation of Composite Panel with Hat-shaped Stiffeners (모자(Hat)형 보강재를 가진 복합재 패널의 제작과 평가)

  • Kim, Geon-Hui;Lim, Do-Wan;Choi, Jin-Ho;Kweon, Jin-Hwe;Lee, Tae-Joo;Song, Min-Hwan;Shin, Sang-Joon
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.31-39
    • /
    • 2010
  • In this paper, composite panels with hat-shaped stiffeners were made using the co-curing, co-bonding and secondary bonding methods. Co-curing is a manufacturing method in which the hat part and the plate are cured simultaneously in a manner that is more cost effective than other methods. Co-bonding is a method in which the stacked prepregs are cured with other cured parts, and secondary bonding is a method in which cured parts are bonded together using an adhesive. A rubber mold was manufactured for co-curing of composite panel with hat-shaped stiffeners, and finite element analyses were done to evaluate the expanding pressure of the rubber mold consistent with the curing temperature. The manufactured panels were also evaluated using a 3-D measurement tester and an ultrasonic tester. Pull-off tests were performed to evaluate their mechanical properties.

Fabrication and Evaluation of Integrated Composite Part for Aircraft using OoA (Out-of-Autoclave) Prepreg (OoA (Out-of-Autoclave) 프리프레그를 이용한 항공기용 복합재 일체형 부품 제작 및 평가)

  • Hong, Sungjin;Song, Min-Hwan;Song, Keunil;Baik, Sang-Moon;Shin, Sang-Jun
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.315-320
    • /
    • 2016
  • Conventionally, composite aircraft structures are fabricated within autoclave at high pressure. However, autoclave process has several disadvantages including high curing costs and limitation of part size. Recently, out-of-autoclave (OoA) processes have been investigated in many studies to replace conventional autoclave process. A newly developed OoA prepreg, using conventional ovens, can significantly reduce the curing costs and produce autoclave-quality parts. Nevertheless, manufacture of void-free complex shape structure using OoA process presents significant challenges because of the low consolidation pressure. In this study, integrated skin-spar-rib composite part was fabricated using OoA prepreg. And cross-sectional macro- and micro-graphs of the part were examined in order to assess the possibility of replacing conventional autoclave process.

Study on the Single-Point Statistical Analysis Techniques to Generate the Composite Material Allowables (복합재 허용치 생성을 위한 점추정 통계분석기법에 관한 연구)

  • Lee, Seung-Yun
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.272-276
    • /
    • 2015
  • 원재료 성분, 프리프레그 제작공정, 재료 취급, 부품 제작 기술, 적층순서, 환경조건, 그리고 시험방법 등 여러 요인으로 인해 복합재 물성치는 일반적으로 금속재에 비해 변동성이 높다. 따라서, 이러한 높은 변동성을 고려하기 위해서는 엄격한 통계분석기법을 적용하여 복합재의 기계적 물성에 대한 설계 허용치를 계산해야 한다. 1990년대 후반 미국에서는 FAA와 NASA를 중심으로 표준화된 절차에 따라 항공기 설계에 적용가능한 복합재 물성 데이터베이스를 구축하고 공유하기 위한 프로세스를 개발하기 시작하였고, 현재 NCAMP를 중심으로 복합재 데이터베이스 구축 작업이 진행되고 있다. NCAMP는 기본적으로 CMH-17에서 채택한 통계분석기법을 이용하여 허용치를 계산하고 있으며, 본 논문에서는 복합재 허용치 계산 기법 중 점추정 방법을 이용한 통계분석 기법과 그 적용에 대해 논하고자 한다.

  • PDF

Basic Design of Composite Wing Box for Light Aircraft (소형 항공기 복합재 주익 구조의 기본 설계)

  • Park, Sang-Yoon;Doh, Hyun-Il;Hwang, Myoung-Sin;Eun, Hee-Bong;Choi, Won-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.74-81
    • /
    • 2004
  • In this study preliminary structural design has been performed to develop an all composite wing box for experimental aircraft(classified in FAR Part 21). Considerations on composite materials and their manufacturing process were taken into account throughout the design phase. Aerodynamic loads were estimated by using Shrenk method(NACA TM No 948) and FAR Part 23 Appendix A. The structural layout has been determined to carry effectively the critical loads and to maximize the benefit of composite structure. Maximum strain failure allowable and first ply failure criteria were applied for the sizing of major structural members. Finally, the designed composite wing box structure is presented in the form of drawings, which include material specifications, stacking sequences and joint design.

Manufacture and Qualification of Composite Main Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 주반사판 제작 및 검증)

  • Dong-Geon Kim;Hyun-Guk Kim;Dong-Yeon Kim;Kyung-Rae Koo;Ji-min An;O-young Choi
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.219-225
    • /
    • 2024
  • It is essential to develop a light-weight, high-performance structure for the deployable reflector antenna, which is the payload of a reconnaissance satellite, considering launch and orbital operation performance. Among them, the composite main reflector is a key component that constitutes a deployable reflector antenna. In particular, the development of a high-performance main reflector is required to acquire high-quality satellite images after agile attitude control maneuvers during satellite missions. To develop main reflector, the initial design of the main reflector was confirmed considering the structural performance according to the laminate stacking design and material properties of the composite main reflector that constitutes the deployable reflector antenna. Based on the initial design, four types of composite main reflectors were manufactured with the variable for manufacturing process. As variables for manufacturing process, the curing process of the composite structure, the application of adhesive film between the carbon fiber composite sheet and the honeycomb core, and the venting path inside the sandwich composite were selected. After manufacture main reflector, weight measurement, non-destructive testing(NDT), surface error measurement, and modal test were performed on the four types of main reflectors produced. By selecting a manufacturing process that does not apply adhesive film and includes venting path, for a composite main reflector with light weight and structural performance, we developed and verified a main reflector that can be applied to the SAR(Synthetic Aperture Rader) satellite.