• Title/Summary/Keyword: 복합재 샌드위치 구조

Search Result 81, Processing Time 0.029 seconds

Investigation on Strength Recovery after Repairing Impact Damaged Aircraft Composite Laminate (항공기 복합재 라미네이트의 충격 손상 부위 유지 보수 후 강도 복원 평가)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Kyung-Sun;Shin, Sang-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.862-868
    • /
    • 2010
  • Development of a small scale aircraft has been carried out for the BASA(Bilateral Aviation Safety Agreement) program in Korea. This aircraft adopted all the composite structures for environmental friendly by low fuel consumption due to its lightness behavior. However the composite structure has s disadvantage which is very weak against impact due to foreign object damages. Therefore the aim of this study is focusing on the damage evaluation and repair techniques of the aircraft composite structure. The damages of composite laminates including the carbon/epoxy UD laminate and the carbon/epoxy fabric face sheets-honeycomb core sandwich laminate were simulated by a drop weight type impact test equipment and the damaged specimen were repaired using the external patch repair method after removing damaged area. The compressive strength test and analysis results after repairing the impact damaged specimens were compared with the compressive strength test and analysis results of undamaged specimens and impact damaged specimens. Finally, the strength recovery capability by repairing were investigated.

A Study on Repair Technique after Damage of Aircraft Sandwich Composite Structure (항공기 기체에 적용된 샌드위치 복합재 구조의 손상 후 수리 방안 연구)

  • Park, Hyunbum;Kong, Changduk
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.39-43
    • /
    • 2013
  • In this study, damage assesment and repair technique of aircraft adopted on Sandwich composite structure were performed. The sandwich composite structure were damaged by drop weight type impact test machine. The damaged sandwich composite structure was repaired using external patch repair method after removing damaged area. This study presents comparison results of the experimental investigation between the impact damaged and the repaired specimen.

Development of Composite Brake Pedal for KTX-1 and Tests for Structural Certification (KTX-1 복합재 브레이크 페달 개발 및 구조 인증시험)

  • Joe, Chee-Ryong;Kim, Hyun-Su;Kim, Kwang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1104-1111
    • /
    • 1999
  • A brake pedal for the flight control system of the Korean primary trainer is developed using composite material. The development includes the structural design, stress analysis, manufacturing and the qualification tests. A FEM analysis is used for the structural design and stress analysis. Autoclaving process is used to fabricate the composite brake pedal. For the qualification tests, modular fixtures are developed and applied. It is shown that the composite brake pedal developed meets all the structural integrity requirements specified in the military specification for aircraft parts.

Optimization of Sandwich Structures of a Small Aircraft Wing using Automated Aero- Structure Interaction Systems (자동화된 공력-구조 연계 시스템을 이용한 소형항공기 날개 샌드위치구조 최적설계)

  • Park, Chan Woo;Chu, Jae Myeong;Shul, Chang Won;Jun, Seung Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1061-1068
    • /
    • 2013
  • In this research, the design optimization of a composite sandwich has been performed for using as an airplane wing skin. Automated analysis framework for aero-structure interaction is used for calculating load data on the wing. For automated analysis framework, FLUENT is used for computational fluid dynamics (CFD) analysis. CFD mesh is generated automatically by using parametric modeling of CATIA and GAMBIT. A computational structure mechanics (CSM) mesh is generated automatically by the parametric method of the CATIA and visual basic script of NASTRAN-FX. The structure is analyzed by ABAQUS. Composite sandwich optimization is performed by NASTRAN SOL200. Design variables are thicknesses of the sandwich core and composite skin panel plies. The objective is to minimize the weight of the wing and constraints are applied for wing tip displacement, global failure index and local failure indexes.

Structural Design and Analysis for Carbon/Epoxy Composite Wing of A Small Scale WIG Vehicle (소형 위그선의 탄소/에폭시 복합재 주익의 구조 설계 및 해석에 관한 연구)

  • Park, Hyun-Bum;Kang, Kuk-Jin;Kong, Chang-Duk
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, conceptual structural design of the main wing for a small scale WIG(Wing in Ground Effect) among high speed ship projects, which will be a high speed maritime transportation system for the next generation in Rep. of Korea, was performed. The Carbon/Epoxy material was selected for the major structure, and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for the present study, firstly the design load was estimated through the critical flight load case study, and then flanges of the front and rear spars from major bending loads and the skin and the spar webs from shear loads were preliminarily sized using the netting rule and the rule of mixture. Stress analysis was performed by a commercial FEA code, NASTRAN. From the stress analysis results for the first designed wing structure, it was confirmed that the upper skin between the front spar and the rear spar was unstable fer the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich type structure at the skin and the web were added. After design modification, the structural safety and stability for the final design feature was confirmed. In addition to this, the insert bolt type structure with eight high strength bolts to fix the wing structure to the fuselage was adopted for easy assembly and removal as well as in consideration of more than 20 years fatigue life.

Low Velocity Impact Behavior of Aluminium and Glass-Fiber Honeycomb Structure (알루미늄과 유리섬유 하니컴 구조의 저속 충격 거동)

  • Kim, Jin Woo;Won, Cheon;Lee, Dong Woo;Kim, Byung Sun;Bae, Sung In;Song, Jung Il
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.116-122
    • /
    • 2013
  • In this study, impact behavior of aluminium and glass-fiber structure is studied under low impact velocity. Compression test is carried out to investigate the compressive strength of the specimens. The degree of damage is observed using microscopy and compared with the experimental analysis data. The maximum load capacity, impact strength and elastic energy of glass-fiber honeycomb sandwich panel are more than the aluminium honeycomb sandwich panel.

Bird Strike Analysis and Test of Composite Aircraft Radome (항공기 복합재 레이돔에 대한 조류충돌해석 및 시험)

  • Won, Moon-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.319-325
    • /
    • 2019
  • The main purpose of this study is to compare the bird strike analysis result of the radome composed of composite laminate and sandwich structure attached to aircraft with test result. First of all, we generated bird model which has water properties through SPH(Smoothed Particle Hydrodynamics) method. And then bird strike analysis was conducted with initial velocity of bird measured from bird strike test. From analysis result we investigated whether structural failure occurred or not onto the radome and compare maximum displacement of the radome structure with test result. Also reliability of numerical analysis model was confirmed through time-dependent pressure trend on this collision process matched existing research result. Furthermore, we confirmed that failure behavior of the radome can be affected by density of the particles in the bird model.

A Study on Structural Design and Test of 500W Class Micro Scale Composite Wind Turbine Blade (초소형 풍력터빈 복합재 블레이드 구조 설계에 관한 연구)

  • Gong, Chang-Deok;Kim, Ju-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.190-193
    • /
    • 2005
  • The purpose of the present study is to design a 500W-class micro scale composite wind turbine blade. The blade airfoil of FFA-W3-211 was selected to meet Korean weather condition. The skin-spar-f Dam sandwich type structure was adopted for improving buckling and vibration damping characteristics. The design loads were determined at wind speed of 25m/s. and the structural analysis was performed to confirm safety and stability from strength. buckling and natural frequency using the finite element code. NISA II [6]. The prototype was manufactured using the hand-lay up method and it was experimently tested using the sand bag loading method. In order to evaluate the design results. it was compared with experimental results. According to comparison results. the estimated results such as compressible stress. max tip deflection natural frequency and buckling load factor were well agreed with the experimental results.

  • PDF

An Experimental Study on the Hybrid Composite Carbody Structure (하이브리드 복합재 철도차량 차체에 대한 시험적 연구)

  • Kim Jung-Seok;Jeong Jong-Cheol;Lee Sang-Jin
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.19-25
    • /
    • 2005
  • This paper has performed an experimental study on the hybrid composite carbody of Korean tilting railway vehicle. The hybrid composite carbody has the length of 23m and is comprised of a 40mm-thick aluminium honeycomb core and 2mm-thick woven fabric carbon/epoxy face sheet. In order to evaluate the structural behavior and safety of the hybrid composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. The test was performed under Japanese Industrial Standard (JIS) 17105 standard. from the tests, the maximum deflection was 12.3mm and the equivalent bending stiffness of the carbody was $0.81\times10^{14}\;kgf{\cdot}mm^2$. The maximum strain of the composite body was below $20\%$ of failure strain of the carbon/epoxy face sheet.