• Title/Summary/Keyword: 복합재 샌드위치 구조

Search Result 81, Processing Time 0.023 seconds

Impact and Bending Characteristics of Dual Band Composite Antennas (복합 구조 이중대역 안테나의 충격 및 굽힘 특성)

  • Shin, Dong-Sik;Kim, Jin-Yul;Park, Wee-Sang;Hwang, Woon-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.35-40
    • /
    • 2011
  • We have studied the impact and bending characteristics of a dual band antenna (1.575, 2.645 GHz) with composite sandwich construction. Mechanical performance of the antenna can be improved by reinforcing the antenna by sandwiching the planar antenna with layers of carbon fiber-reinforced plastic(CFRP) and glass fiber-reinforced plastic(GFRP) using an adhesive film. According to the ASTM D7137, ASTM C393 and MIL-STD401B, impact and bending test were performed and the S-parameters and gains of the antenna were measured in order to verify electrical and mechanical performance. The maximum contact load and the bending load of the antenna are 4 kN and 400 N and gains of the antenna are 6 dBi and 4.6 dBi in the GPS and DMB bands, respectively. The proposed antenna structure can be applied to surfaces of vehicles.

A Study on Structural Test and Derivation of Standard Finite Element Model for Composite Vehicle Structures of Automated People Mover (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 검증에 의한 유한요소 모델 도출 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Dae-Hwan
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • The vehicle structure of Automated People Mover(APM) made of aluminum honeycomb sandwich with WR580INF4000 glass-fabric epoxy laminate facesheets was evaluated by structural test and finite element analysis. The test of the vehicle structure was conducted according to JIS E 7105. The structural integrity of vehicle structure was evaluated by stress, deflection and natural frequency obtained from dial-gauge and acceleration sensor. And the proposed finite element models were compared with the results of structural test. The results of finite element analysis showed good agreement with those of structural test. Also, in order to improve the stiffness of vehicle structure, the modified underframe model with reinforced side sill was proposed in design stage. The composite vehicle structures with modified underframe model had the improved structural stiffness about 44%.

A Study on Lightweight Design of Double Deck High-Speed Train Hybrid Carbody Using Material Substitution and Size Optimization Method (소재대체법과 치수최적화 기법을 이용한 2층 고속열차 하이브리드 차체 구조물의 경량 설계 연구)

  • Im, Jae-Moon;Jung, Min-Ho;Kim, Jong-Yeon;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • The purpose of this paper is to suggest a lightweight design for the aluminum extrusion carbody structure of a double deck high-speed train using material substitution and size optimization method. In order to conduct material substitution, the topology optimization was used to determine the application parts of sandwich composites at the carbody structures. The results of analysis showed that sandwich composites could be applied at roof and 2nd underframe. The size optimization was used to determine thickness of the aluminum extruded and carbon/epoxy composite. The design variable, state constraint and objective function were formulated to solve the size optimization, and then, the feasible design was presented by these conditions. The results of the lightweight design showed that the weight of double deck high-speed train hybrid carbody could be reduced by 2.18(17.70%) tons.

An Experimental Study on the Failure of a Novel Composite Sandwich Structure (새로운 형상의 복합재 샌드위치 체결부 구조의 파손거동 연구)

  • Kwak, Byeong-Su;Kim, Hong-Il;Dong, Seung-Jin;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.209-215
    • /
    • 2016
  • The failure of composite sandwich structures with thickness and material variation was studied. The main body of the structure is sandwich plate made of the carbon composite face and Aluminum honeycomb core. It is connected with composite laminated flange without core through transition region of tapered sandwich panel with foam core. Tension and compression tests were conducted for the total of 6 panels, 3 for each. Test results showed that the panels under compression are vulnerable to the face failure along the material discontinuity line between two different cores. However the failure load of which panel does not show such failure can carry 16% more load and fails in honeycomb core and face debonding. For the tensile load, the extensive delamination failure was observed at the corner radius which connects the panel and the flange. The average failure load for compression is about 7 times the tensile failure load. Accordingly, these sandwich structures should be applied to the components that endure the compressive loadings.

Study on Impact Damage Behavior of Turbo Fan Engine Nacelle Sandwich Composite Structure (터보팬 엔진 나셀용 샌드위치 복합재 구조물의 손상 거동 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Seung-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.75-78
    • /
    • 2007
  • In this study, low velocity impact analysis on Turbo Fan Engine composite sandwich structure was performed. Sandwich structure configuration is made of carbon/epoxy face sheets and foam cores. For validating study, the results of an experimental and of a Finite Element Method analysis were compared previously. From the Finite Element Method analysis results of sandwich panel, it was confirmed that the result of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using Finite Element Method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity.

  • PDF

750kW급 대형 수평축 풍력발전용 복합재 회전날개의 경량화 및 설계개선에 관한 연구

  • 공창덕;방조혁;정종철;강병훈;정석훈;김종식;류지윤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.28-28
    • /
    • 1999
  • 본 연구는 이전 연구에서 500KW급 중형 수평축 발전기를 설계하였던 경험을 토대로 750KW급 대형 수평축 풍력발전용 복합재 회전날개를 개발하기 위해 수행되었다. 회전날개의 대형화에 따른 구조강도 확보 및 경량화 문제를 해결하기 위해 날개의 단면구조를 변경하였고, 주 하중을 받는 스파부분을 보강하였으며, 취급이 어렵고 가격이 비싼 노맥스 허니컴 대신에 폼을 사용한 샌드위치 구조를 적용하였다. 또한 경량화를 위해 금속재 플렌지형 허브부분 접합방식을 삽입볼트 접합방식으로 구조 설계를 변경하였다. 이러한 복합재 회전날개의 구조적 안정성을 확인하기 위해 상용 유한요소 해석 코드인 NISA II를 사용하였으며, 선형정적해석, 고유진동수해석, 국부 좌굴해석 등을 수행하여, 무게의 증가는 최대한 억제하면서 대형화에 따른 구조강도의 확보가 이루어졌음을 확인하였고, 피로수명해석을 통하여 20년 이상의 요구 수명을 만족함을 확인하였다.

  • PDF

Development of a Composite Spacecraft Structure for STSAT-3 Satellite Program (소형 복합재 위성 구조체 개발)

  • Cho, Hee-Keun;Seo, Jung-Ki;Kim, Byoung-Jung;Jang, Tae-Seung;Cha, Won-Ho;Lee, Dai-Gil;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.727-736
    • /
    • 2010
  • A satellite that has an all-composite structure, STSAT-3(science and technology satellite), was initially developed in Korea. Partially use of advanced composites in space applications such as solar panel is well developed, however the application of an all-composite satellite bus has never been achieved in Korea. This study emphasizes the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small-class satellite STSAT-3. Moreover its structure design concept is totally different from the one that was used in the previous satellites developed in Korea.

Processing and Flexural Properties of Chopped Jute Fiber Reinforced PLA Sandwich Composites (황마 단섬유 강화 폴리유산 샌드위치 복합재의 제작 및 굽힘 특성)

  • Lee, Gyu Hee;Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.96-102
    • /
    • 2014
  • In this study, we fabricated jute fiber reinforced polylactic acid (PLA) composite in the form of sandwich panel structure which includes core foam of chopped jute fiber reinforced PLA and outer skin layer of continuous glass fiber reinforced PLA. Flexural properties of the composite were assessed for different jute fiber weight fractions. Density of the core foam ranged from 0.31 to 0.67 $g/cm^3$ and void content fraction 0.51 to 0.71. The maximum flexural strength was 92.7 MPa at 12.5 wt.% of jute fiber content, and the maximum flexural modulus was 7.58 GPa at 30.0 wt.%. Cost analysis was also conducted. The cost to enhance the flexural strength of the applied structure was estimated to be $0.010USD/m^3/MPa$ for 12.5 wt.% fiber content.

Random Vibration Characteristics of a Whole Structure Composite Satellite Having Hybrid Composite Sandwich Panels (하이브리드 복합재 샌드위치 패널로 구성된 전구조 복합재 위성의 랜덤진동 특성 평가)

  • Cho, Hee-Keun;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.798-805
    • /
    • 2010
  • Whole composite structure small class (150kg) satellite, STSAT-3, was initially developed in Korea. The structure does have aluminum frames that support the structure, and it is composed of only composite sandwich panels. A number of electronic boxes and mechanical apparatus will be shielded within the compartments built up by the composite panels. This study focused on the random vibration responses of the satellite. For this objective, vibration tests and analyses have been successfully performed with respect to STM (structure and thermal model) of the satellite. Additionally, through the experiment and theoretical analyses, the both results' accuracy was verified by comparison each other.

Stress Analysis of Composite Rotor Blade with Sandwich Structure for Medium Class HAWT (좌굴 및 비선형성을 고려한 중형 수평축 풍력터빈용 샌드위치 복합재 회전날개의 설계 개선에 관한 연구)

  • 공창덕;오동우;방조혁
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1998
  • The exhaustion of fossil fuels and serious environmental pollution put the concern about non-po llution energy into the world. On the developments of technology, wind energy has been spotlighted as a non-pollution energy in many countries. This study has carried out the aerodynamic and structural design procedure of the lightweight composite rotor blades with an appropriate aerodynamic performance and structural strength for the 500㎾ medium class wind turbine system. The previous design, which is shell-spar structure, is redesigned to shell-spar- sandwich structure for light weight. Large deformation problem from light weight is examined by non-linear analysis. Local buckling occurred under lower stress than failure stress. The buckling analysis is accomplished to confirm the safety of the composite blade. The stress analysis around pin hole joint part at hub is carried out and it is confirmed that the pin hole is not failed. The results show that the resonance of redesigned blade does not happen in operation range.

  • PDF