• Title/Summary/Keyword: 복합재료 스프링

Search Result 43, Processing Time 0.021 seconds

Evaluation of Stability of Lining Systems of Landfill Using Discrete Element Method (개별요소법을 사용한 매립지 사면 차수 시스템의 안정성 평가)

  • 박현일;이승래;정구영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • In this paper, the discrete element method was applied to evaluate the stability of composite cover and lining system of landfill. This method is capable of estimating the distribution of tensile force and shear stress mobilized in each liner component and its interfaces, based on a relationship of force and displacement. It was assumed that the cover soil and geomembrane were comprised of slices connected with elastoplastic Winkler springs and tensile spring respectively. Parametric study using this method was performed and compared with other techniques based on limit equilibrium method fur the example analysis.

Analysis and Experiment on Dynamic Characteristics for Deployable Composite Reflector Antenna (전개형 복합재료 반사판 안테나의 동특성 분석 및 시험)

  • Chae, Seungho;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Park, Sung-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.94-101
    • /
    • 2019
  • The dynamic characteristics of the composite reflector panels are numerically and experimentally investigated. A dynamics model of the panel is analytically developed based on a deployment mechanism of the antenna. The deployment is passively activated using elastic energy of a spring with two rotational degrees of freedom. Using the flexible multi-body dynamic analysis ADAMS, dynamic behavior of the panels such as velocities, deformations, as well as reaction forces during the deployment, are investigated in the gravity and zero-gravity cases. The reflector panel is manufactured using carbon fiber reinforced plastics (CFRPs) and its deployment characteristics are experimentally observed using a zero-gravity deployment test. The impact response and vibration problems that occur during deployment of the antenna panel have been identified and reliably deployed using dampers.

Residual Deformation Analysis of Composite by 3-D Viscoelastic Model Considering Mold Effect (3-D 점탄성 모델을 이용한 복합재 성형후 잔류변형해석 및 몰드 효과 연구)

  • Lee, Hong-Jun;Kim, Wie-Dae
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.426-433
    • /
    • 2021
  • The carbon fiber reinforced plastic manufacturing process has a problem in that a dimensional error occurs due to thermal deformation such as residual stress, spring-in, and warpage. The main causes of thermal deformation are various, including the shape of the product, the chemical shrinkage, thermal expansion of the resin, and the mold effect according to the material and surface condition of the mold. In this study, a viscoelastic model was applied to the plate model to predict the thermal deformation. The effects of chemical shrinkage and thermal expansion of the resin, which are the main causes of thermal deformation, were analyzed, and the analysis technique of the 3-D viscoelastic model with and without mold was also studied. Then, the L-shaped mold effect was analyzed using the verified 3D viscoelastic model analysis technique. The results show that different residual deformation occurs depending on the surface condition even when the same mold is used.

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

A Study on Foot Pressure by using an Insole Equipped with the Orthogonal Grid Sensor (직교 그리드 센서가 삽입된 인솔을 이용한 족압분포 연구)

  • Son, Jeong-Hyeop;Jun, In-Jun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • In this study, we present a research method to develop a shoe that prevents foot injury by inducing the foot pressure. An orthogonal grid sensor was used to check the foot pressure in the upright standing position, and the change in the foot pressure distribution for various conditions was compared. We checked the conditions for distributing foot pressure efficiently by changing the spring constant of the spring inserted into the sole of the shoe and the foot pressure generated with or without the arch of the insole. In order to minimize the experimental error from the randomness of the human body's behavior, it is possible to predict through foot pressure under certain conditions through finite element analysis that simulates the pressure distribution. By checking the change of foot pressure according to the number and arrangement of springs through finite element analysis, conditions were established to provide more efficient foot pressure. The result can be used for designing footwear for patients with diabetic feet.

Structural test of KSLV-I Payload fairing (KSLV-I 페이로드 페어링 구조시험)

  • Lee, Jong-Woong;Kong, Cheol-Won;Eun, Se-Won;Nam, Gi-Won;Jang, Young-Soon;Shim, Jae-Yeul;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.900-907
    • /
    • 2013
  • Payload fairing(PLF) protects satellites and related equipment from the external environment. They are separated before the satellite separation. Payload fairing made of composite sandwich materials due to their considerable bending stiffness and strength-to-weight ratio. Payload fairing have compression, shear and bending load during the flight. In this study, To check the strength of PLF and connected part, structural test of PLF accomplished using an actuator and a fixture. Purpose of structural test is to verify the strength of PLF in force of separation spring and combination structural load applied. Test result shows that the PLF have an acceptable margin of safety for the combination structural load and force of separation spring.

Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites (분자동역학 전산모사와 미시역학 모델을 이용한 질화붕소 나노튜브/고분자 복합재의 역학적 물성 및 계면특성 예측)

  • Choi, Seoyeon;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2017
  • In this study, the mechanical behavior and interface properties of boron nitride nanotube-poly(methyl methacrylate) nanocomposites are predicted using the molecular dynamics simulations and the double inclusion model. After modeling nanocomposite unit cell embedding single-walled nanotube and polymer, the stiffness matrix is determined from uniaxial tension and shear tests. Through the orientation average of the transversely isotropic stiffness matrix, the effective isotropic elastic constants of randomly dispersed microstructure of nanocomposites. Compared with the double inclusion model solution with a perfect interfacial condition, it is found that the interface between boron nitride nanotube and polymer matrix is weak in nature. To characterize the interphase surrounding the nanotube, the two step domain decomposition method incorporating a linear spring model at the interface is adopted. As a result, various combinations of the interfacial compliance and the interphase elastic constants are successfully determined from an inverse analysis.

Prediction of Deformation of Carbon-fiber Reinforced Polymer Matrix Composite for Tool Materials and Surface Conditions (성형툴의 상태에 따른 탄소섬유강화 복합재 구조물의 변형 예측)

  • Sung, Su-Hwan;Kim, Wie-Dae
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.231-235
    • /
    • 2014
  • Autoclave processing has a good quality of product, but manufacturing cost is expansive. After curing of composite, the unwanted deformation and distortion increase the manufacturing cost by redesign of tool parts. Therefore, manufacturing cost down is a big issue in processing level. For the reduction of tool costs, it is important to investigate the effects of tool materials and tool surface conditions. In this paper, we organized user subroutine in ABAQUS to consider the thermal effects of part and tool, and the results are compared with commercial code, COMPRO. And this paper suggests reference point for the selection of tool materials to reduce manufacturing costs.

Effects of Interphase Condition and Short-fiber Content on the Fatigue Properties of Reinforced Rubber (계면상 조건과 단섬유 함유량이 강화고무의 피로특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.10-17
    • /
    • 2000
  • The fatigue properties of short nylon66 fiber reinforced Chloroprene rubber have been investigated as functions of interphase conditions and fiber content. The spring constant of rubber decreased about 21% after the fatigue test. On the contrary, that of reinforced rubber increased in all cases. The changing rate of spring constant for reinforced rubber decreased with increasing fiber content. This means that the better interphase condition, the smaller changing rate of spring constant. Temperature of matrix increased about 2.5 times and one of reinforced rubber showed 1.7∼2 times up after the test. The changing rate of temperature for reinforced rubber during fatigue test decreased with increasing fiber content. It is found that the better interphase condition, the smaller changing rate of specimen temperature at the same fiber content. Double coatings of bonding agent 402 and rubber solution became the best interphase model in this study. And, we have investigated the possibility of applying short-fiber reinforced rubber to automotive engine mount rubber, bush and stopper.

  • PDF

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.