• Title/Summary/Keyword: 복합용사

Search Result 67, Processing Time 0.02 seconds

Residual stresses on plasma sprayed zirconia coatings (플라즈마 용사법에 의한 지르코니아 코팅에서의 잔류응력에 대한 연구)

  • 류지호;강춘식
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.46-55
    • /
    • 1989
  • Zirconia coatings are performed by the plasma spraying on the substrate of Al-Si alloy. In case of plasma sprayed ceramic coatings, it is important to control properly residual stress occurred during cooling process. Residual stress in coating layer varies with sprayed conditions and is influenced greatly by the coating layer thickness. Surface residual stress due to coating layer thickness is measured by X-ray diffraction method and the residual stress in coating layer is estimated by the deflection of coating layer when the restraint force in substrate was removed. When zirconia was coated on the substrate, tensile residual stress remains on zirconia coated surface layer. The tensile stress is increased to 0.35mm thickness and after 0.45mm thickness it is decreased abrouptly. A thick bond and composite coating reduce the zirconia surface stress and composite coating controls effectively the thick zirconia surface stress.

  • PDF

Plasma spray coating of zirconia ceramic (용사법에 의한 질코니아 세라믹코팅에 대한 연구)

  • 이형근;김대훈;황선효;전계남;서동수
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.25-34
    • /
    • 1989
  • The purpose of this work is to coat ZrO$_{2}$ - 8Y$_{2}$O$_{3}$ ceramic on the Al cast alloy(AC-8A) by using the plasma spray method. Two types of coatings which were composed of two and three layer coating were examined. Each coating powder was analyzed for shape and size distribution and X-ray diffraction pattern. For the coated layers, microstructural analysis and performance estimation which was composed of static thermal test, thermal cyclic test and thermal shock test were conducted.

  • PDF

Characteristics of plasma sprayed composite YSZ/Ni-Cr resistant heating coatings (YSZ/Ni-Cr 저항 발열 복합용사피막의 특성)

  • 김병수;박경채;김태형;양병모
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.111-113
    • /
    • 2003
  • The existing heating unit is indirect-heating method that make use or the nichrome wire or halogen lamp. The indirect-heating method has the demerits of long warming time, high power consumption and many organization parts. In this study, the heating unit of direct-heating method manufactured as being the thermal spray coating of conductive heating material on the surface of heating unit in order to improve the demerits of indirect-heating method. And YSZ added Ni-20Cr that had moderate electrical resistivity was chosen of the conductive heating material.

  • PDF

Study of the thermal shock resistance of multi-coating for C/C composite by plasma spray coating (플라즈마 용사법에 의해 다층코팅된 탄소탄소복합재료의 열충격 저항성 연구)

  • Lee, Gu-Hyeon;Jeong, Seong-Il;Byeon, Eung-Seon;Nam, Gi-Seok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.106-106
    • /
    • 2013
  • C/C Composite는 비교적 낮은 온도에서 산화되어 고유의 특성을 쉽게 잃어버리게 된다. 본 연구에서는 Plasma Spray 코팅방법을 사용하여 다층 코팅층을 형성 시킨 후 $1600^{\circ}C$의 온도에서 열충격 저항성을 평가하였다.

  • PDF

Thermal Stress Analysis of Functuonally Graded Ceramic/Metal Composites(I)-Plasma Spraying Material- (경사기능성 세라믹/금속 복합재료의 열응력 해석(1)-플라즈마 용사재-)

  • Song, Jun-Hee;Lim, Jae-Kyoo;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.439-446
    • /
    • 1997
  • A traditional notion of composites has been composed as a uniform dispersoid, but now it is proposed without regard to such rule with process development. Functionally Graded Material(FGM) consists of a new material design that is to make intentionally irregular dispersion state. In this study, thermal stress analysis of plasma spraying PSZ/NiCrAlY gradient material was conducted theoretically using a finite-element program. A formations of the model are direct bonding material(NFGM) and FGM with PSZ and NiCrAlY component element. The temperature conditions were $700^{\circ}C$ to 1100.deg. C assuming a cooling-down precess up to room temperature. Fracture damage mechanism was analyzed by the parameters of residual stress.

Fabrication of Cr$_2$O$_3$/Mo Composite Powders and Tribological Properties of Plasma-sprayed Coatings (플라즈마 용사용 산화크롬/몰리브덴 복합분말 제조와 용사코팅의 마찰.마멸 특성)

  • 여인웅;안효석;김충현
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.184-192
    • /
    • 1999
  • Various compositions of$ Cr_2$$O_3$/Mo composite powders were fabricated using spray-drying method and plasma-spray coatings of these powders were prepared to understand their tribological properties. Experiments were conducted using a reciprocal type tribo-tester at room temperature under dry sliding condition. The worn surface of coated specimens were observed using SEM (Scanning Electron Microscopy) and chemical compositions were analyzed using XRD (X-ray Diffractometry) and XPS (X-ray Photoelectron Spectroscopy). The results showed that friction coefficient of the Mo added specimens were lower than that of $Cr_2$$O_3$specimen. However $Cr_2$$O_3$specimen showed the lowest wear loss. Wear protecting layer were observed at the worn surface of coated specimens with Mo addition. From the XPS analysis, the mixed phases of $Cr_2$$O_3$ $CrO_3$and $MoO_3$were founded in the wear protecting layer.

Measurement of the Coating Temperature Evolution during Atmospheric Plasma Spraying (대기압 플라즈마 용사 공정에서의 기판 코팅 온도 영향 연구)

  • Lee, Kiyoung;Oh, Hyunchul
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.624-629
    • /
    • 2020
  • For more effective temperature control of atmospheric plasma sprayed (APS) zirconia thermal barrier coating, understanding of the parameters, which influence the substrate temperature, is essential and also more numerical results based on the experimental data are required. This study aims to investigate the substrate temperature control during an APS process. The APS process deals with air-cooled systems, plasma-gas flow, powder feed rate, robot velocity, and substrate effect on the substrate surface temperature control during the process. This systematic approach will help to handle the temperature control, and thus lead to better coating quality.

Dry Friction Characteristics of Bulk Amorphous Thermal Spray Coating and Amorphous Metallic Matrix Composites (벌크 비정질 용사코팅과 비정질 기지 복합재료의 건조 마찰특성)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • The friction behaviors of bulk amorphous thermal spray coating (BAC) and second phase-reinforced composite coatings using a high velocity oxy-fuel spraying process were investigated using a ball-on-disk test rig that slides against a ceramic ball in an atmospheric environment. The surface temperatures were measured using an infrared thermometer installed 50 mm from the contact surface. The crystallinities of the coating layers were determined using X-ray diffraction. The morphologies of the coating layers and worn surfaces were observed using a scanning electron microscope and energy-dispersive spectroscopy. The results show that the friction behavior of the monolithic amorphous coating was sensitive to the testing conditions. Under lower than normal loads, a low and stable friction coefficient of about 0.1 was observed, whereas under a higher relative load, a high and unstable friction coefficient of greater than 0.3 was obtained with an instant temperature increase. For the composite coatings, a sudden increase in friction coefficient did not occur, i.e., the transition region did not exist and during the friction test, a gradual increase occurred only after a significant delay. The BAC morphology observations indicate that viscous plastic flow was generated with low loads, but severe surface damage (i.e., tearing) occurred at high loads. For composite coatings, a relatively smooth surface was observed on the worn surface for all applied loads.

Development of Fitting Process for Extra Long Stainless/Composite Material Pipes (초장축 스테인레스/복합재료 파이프의 피팅 공정 개발)

  • Park, S.H.;Lee, C.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2008
  • Rubbing-roller is used for manufacturing liquid crystal display, and static displacement of the rubbing-roller becomes bigger as length of the rubbing roller made of aluminum is getting longer. Therefore, material of the rubbing-roller is changed from aluminum to CFRP(Carbon Fiber Reinforced plastic). Recently thermal spraying is applied to manufacturing process of long rubbing-roller. The thermal spraying has disadvantages such as increment of manufacturing time and fraction defective caused by density of stainless steel particle. In this study, fitting process by drawing was suggested and FEM analysis with Tsai-Wu failure theory and fitting experiments are carried out to find adequate shrink allowance. The suggested shrink allowance gives proper adhesive force, and CFRP failure is not occurred. Furthermore, the fitting process is applied to long rubbing-roller and availability of the fitting process is studied by measurement of roundness, straightness and shear strength.

Wear Behavior of Al-based Composites according to Reinforcements Volume Fraction (강화상의 분율에 따른 알루미늄기 복합재료의 마모거동)

  • Lee, K.J.;Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.77-82
    • /
    • 2011
  • SiC particulate reinforced Al matrix composites with different SiC volume fractions were fabricated by thermal spray process. And the dry sliding wear test were performed on these composites using the applied load of 10 N, rotational speed of 30 rpm, radius of rotation 15 mm. Wear tracks on the Al/SiC composites were investigated using scanning electron microscope(SEM) and energy dispersive spectroscopy (EDS). It was observed that wear behavior of Al/SiC composites and formation of MML was changed dramatically according to reinforcement volume fraction.