Browse > Article
http://dx.doi.org/10.14478/ace.2020.1071

Measurement of the Coating Temperature Evolution during Atmospheric Plasma Spraying  

Lee, Kiyoung (Department of Advanced Science and Technology Convergence, Kyungpook National University)
Oh, Hyunchul (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
Publication Information
Applied Chemistry for Engineering / v.31, no.6, 2020 , pp. 624-629 More about this Journal
Abstract
For more effective temperature control of atmospheric plasma sprayed (APS) zirconia thermal barrier coating, understanding of the parameters, which influence the substrate temperature, is essential and also more numerical results based on the experimental data are required. This study aims to investigate the substrate temperature control during an APS process. The APS process deals with air-cooled systems, plasma-gas flow, powder feed rate, robot velocity, and substrate effect on the substrate surface temperature control during the process. This systematic approach will help to handle the temperature control, and thus lead to better coating quality.
Keywords
Thermal barrier coatings; Atmospheric plasma spray; Thermal spray processes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Fauchais, G. Montavon, M. Vardelle, and J. Cedelle, Developments in direct current plasma spraying, Surf. Coat. Technol., 201, 1908-1921 (2006).   DOI
2 Fr.-W. Bach, A. Laarmann, and T. Wenz, Triplex II - Development of an economical high-performance plasma spray system for highest-quality demands even under challenging production xonditions, In: H. Zimmermann and H.-M. Hohle (eds.). Modern Surf. Tech., 159-178 Wiley-VCH Verlag GmbH & Co. KGaA, Germany (2006).
3 G. Mauer, M. O. Jarligo, D. Marcano, S. Rezanka, D. Zhou, and R. VaBen, Recent developments in plasma spray processes for applications in energy technology, IOP Conf. Series: Materials Sci. Eng., 181, 012001 (2017).   DOI
4 L. Zhao, K. Seemann, A. Fischer, and E. Lugscheider, Study on atmospheric plasma spraying of Al2O3 using on-line particle monitoring, Surf. Coat. Technol., 168, 186-190 (2003).   DOI
5 D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian, Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology, Prog. Natural Sci.: Materials Int., 22, 468-479 (2012).   DOI
6 D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, Comparison of the corrosion behaviour of AZ31B magnesium alloy under immersion test and potentiodynamic polarization test in NaCl solution, J. Magnesium Alloys, 2, 140-153 (2014).   DOI
7 F. Azarmi, T. W. Coyle, and J. Mostaghimi, Optimization of atmospheric plasma spray process parameters using a design of experiment for alloy 625 coatings, J. Thermal Spray Technol., 17, 144-155 (2008).   DOI
8 M. Bounazef, S. Guessasma, G. Montavon, and C. Coddet, Effect of APS process parameters on wear behaviour of alumina-titania coatings, Mater. Lett., 58, 2451-2455 (2004).   DOI
9 R. Soltani, M. Heydarzadeh-Sohi, M. Ansari, F. Afsari, and Z. Valefi, Effect of APS process parameters on high-temperature wear behavior of nickel-graphite abradable seal coatings, Surf. Coat. Technol., 321, 403-408 (2017).   DOI
10 H. Waki, T. Kitamura, and A. Kobayashi, Effect of thermal treatment on high-temperature mechanical properties enhancement in LPPS, HVOF, and APS CoNiCrAlY coatings, J. Therm. Spray Technol., 18, 500 (2009).   DOI
11 A. Rico, J. Rodriguez, and E. Otero, High temperature oxidation behaviour of nanostructured alumina-titania APS coatings, Oxid. Met., 73, 531-550 (2010).   DOI
12 E. Lugscheider, C. Barimani, P. Eckert, and U. Eritt, Modeling of the APS plasma spray process, Comput. Mater. Sci., 7, 109-114 (1996).   DOI
13 D. Tejero-Martin, M. Rezvani Rad, A. McDonald, and T. Hussain, Beyond traditional coatings: A review on thermal-sprayed functional and smart coatings, J. Thermal Spray Technol., 28, 598-644 (2019).   DOI
14 E. Pfender, Thermal plasma technology: Where do we stand and where are we going?, Plasma Chem. Plasma Proc., 19, 1-31 (1999)   DOI
15 A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C. C. Berndt, J. O. Berghaus, M. Boulos, J. Brogan, A. C. Bourtsalas, A. Dolatabadi, and M. Dorfman, Thermal spray roadmap, J. Therm. Spray Technol., 25, 1376-1440 (2016).   DOI
16 R. C. Tucker, Thermal Spray Technology, 1st (Ed.), ASM Handbook, Volume 5A, OH, USA (2013).
17 S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskia, and U. Kortshagen, The 2012 plasma roadmap, J. Phys. D Appl. Phys., 45, 253001 (2012).   DOI
18 L. Xie, D. Chen, E. H. Jordan, A. Ozturk, F. Wu, X. Ma, B. M. Cetegen, and M. Gell, Formation of vertical cracks in solution-precursor plasma-sprayed thermal barrier coatings, Surf. Coat. Technol., 201, 1058-1064 (2006).   DOI