• Title/Summary/Keyword: 복합열전달

Search Result 110, Processing Time 0.023 seconds

Analyses for Temperature Profile and Heat Loss Calculation in the Refractory of Coal Gasifier (석탄가스화기 내화재 온도분포 및 열손실 해석)

  • 이진욱;윤용승;안달홍
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.67-75
    • /
    • 1999
  • 여러 종류의 내화재로 구성된 석탄가스화기에서의 온도분포 및 열손실량을 구하기 위한 전산해석을 수행하였다. 석탄가스화기 내화재 설계를 위한 적절한 방법론을 제안하기 위하여 1차원 이론적 해석, 2차원 전도열전달 해석 및 3차원 대류-전도 복합열전달 해석 등 세가지 방법론으로 해석을 각각 수행하였다. 해석 결과들은 석탄가스화기 실험 결과와 정상적 정량적으로 잘 일치하는 것으로 나타났다. 결과의 정확성, 수치해석 상의 수렴성 및 계산시간 등을 종합적으로 고려해 볼 때, 전산해석에 핵심 경계조건인 가스화기 내벽의 온도를 적절히 설정할 수 있는 경우에는 2차원 전도열전달 해석이 공학적 설계에 적용하기 알맞은 방법론으로 판단되었다. 전산해석 결과에 의하면, 현재 실험이 진행중인 하루 3톤 처리 용량급의 석탄가스화기에서의 총 열손실량은 설계치 운전 기준으로 약 1% 정도인 것으로 판별되었다.

  • PDF

Geometry Design of Coal Gasifier Refractory using Computational Fluid Dynamics (전산유체역학기법에 의한 석탄가스화기 내화재 형상 설계)

  • 이진욱;박병수;윤용승;안달홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.15-20
    • /
    • 1998
  • 전산유체역학 기법을 이용하여 석탄가스화기 내화재내에서의 온도분포 해석 및 열손실량 계산을 수행하였다. 일차원 이론적 해석, 이차원 전도열전달 해석 및 삼차원 대류-전도 복합열전달 해석 등 세 가지 방법론으로 전산해석을 수행하고 그 결과들을 서로 비교하였으며, 또한 해석결과들을 석탄가스화기 실험결과와 비교하였다. 결과의 정확성, 수치해석상의 편리성(수렴성 및 계산시간) 등을 종합적으로 검토하여, 이차원 전도열전달 해석이 공학적 설계에 적용하기 적절한 방법론임을 제시하였다. 전산해석 결과를 3톤/일급 석탄가스화기에 적용해 본 결과, 총 열손실량은 설계치 운전기준으로 약 1% 정도인 것으로 판별되었다.

  • PDF

Development of Design Code for Oxidizer-Rich Preburner of Staged Combustion Cycle Engine Using Cantera (Cantera를 이용한 케로신 다단연소사이클 엔진용 산화제 과잉 예연소기 설계코드 개발)

  • Si-Yoon Kang;Seong-Ku Kim;Chulsung Ryu;Insang Moon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.10-20
    • /
    • 2022
  • The present study developed a design code for preburner of staged combustion cycle engines, which calculates preburnt gas at high-pressure oxidizer-rich conditions and predicts conjugate heat transfer and hydraulics of cryogenic fluid flow through cooling passages. It has been written based on the open-source library Cantera, into which this study has incorporated new source codes to predict correctly non-ideal thermodynamics and transport anomalies of the cryogenic fluid. For a preburner of 100 tonf-class booster engine currently under preliminary design, the present code demonstrated predictive capability and usability as a design code by comparing with CFD simulation.

Design Improvement of Baffle Injector Using Conjugate Heat Transfer Analysis (복합열전달 해석을 이용한 배플 분사기 설계 개선)

  • Kim, Seong-Ku;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.395-402
    • /
    • 2010
  • Baffle injectors are protruded into the combustion chamber and form an anti-pulsating baffle to prevent high-frequency combustion instabilities in transverse modes. Being exposed to a high heat-flux environment, the baffle injector has self-cooling passages through which kerosene is convected and heated. The baffle injector with 20 spiral cooling channels has been developed and successfully applied to 30 $ton_f$-class combustors without any performance loss due to an additional cooling. In this work, numerical analysis of conjugate heat transfer in baffle injectors with various cooling channel designs has been performed in order to reduce the fabrication cost which would be considerably increased for the 75 $ton_f$-class combustor. Prior to the application to a full-scale combustor, the thermal durability of the modified design has been verified through the subscale hot-firing tests.

Conjugate Heat Transfer Characteristics in a Ribbed Channel:Effect of Reynolds Number and Heat Capacity Ratio (요철이 설치된 채널 내에서 레이놀즈수와 열용량비에 따른 복합열전달 특성)

  • Song, Jeong-Chul;Ahn, Joon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2297-2302
    • /
    • 2007
  • Numerical simulations are conducted to analyze conjugate heat transfer characteristics in a ribbed channel. In this simulation, the effects of Reynolds number and heat capacity of the solid channel wall on convective heat transfer are observed in the turbulent flow regime. In the case of the conducting wall against isothermal wall, the relative ratio of the thermal resistance between the solid wall and the flow field varies with Reynolds number. Thus the characteristics of the conjugate heat transfer are changed with the Reynolds number. Heat capacity ratio affects the temperature fluctuation inside solid wall. The temperature fluctuation inside the solid wall decreases with increasing the heat capacity of the solid wall so that the convective heat transfer increases. When the thermal conductivity ratio is smaller than 10, the effects of flow characteristics on heat transfer are changed.

  • PDF

Conjugated heat transfer of the simulated module on the bottom of a inclined channel (경사진 채널 밑면에 부착된 모사모듈의 복합열전달)

  • Lee, Jin-Ho;Cho, Seong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.471-476
    • /
    • 2001
  • The characteristics of conjugated heat transfer in the inclined channel was experimentally investigated. The simulated module is attached to the bottom of the inclined channel and is heated with constant heat flux. The experimental parameters of this study are input power (Q = 3, 7W), inlet air velocity ($V_{i}=0.1{\sim}0.9m/s$) and inclined channel angle (${\varphi}=0{\sim}90^{\circ}$). The results show that input power was most effective parameter on the temperature differences between module and air. As the inclined channel angle increases, the temperatures of the module are increased. And we obtained the best condition on the conductive board when ${\varphi}=0^{\circ}$.

  • PDF

Investigation of the Conjugate Heat Transfer and Wall Thermal Boundary Conditions (복합열전달과 열경계조건에 관한 연구)

  • Chang, Byong Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 1999
  • The effects of wan thermal boundary condition were investigated for a uniform wall temperature, a uniform wall heat flux, and for coupled heat conduction In the channel wall with transverse rectangular ribs. Numerical investigations for steady laminar flow show behavior similar to that observed experimentally in the separated flow region for flow over a cylinder. Conjugate heat transfer with a low solid-fluid thermal conductivity ratio does not lead to the same results as for the uniform heat flux boundary condition, and heat transfer reversal is found on the back sides of the ribs.

Solid-Fluid Interface Treatment in Conjugate Heat Transfer Analysis using Unstructured Grid System (비정렬격자계를 사용하는 복합열전달 해석에서의 고-액 계면 처리방법)

  • Myong Hyon-Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • Conjugate heat transfer (CHT) is the simultaneous, coupled heat transfer within a fluid and an adjoining solid, and the interface treatment plays an important role in its analysis, particularly when using unstructured grid system. In the present paper a new solid-fluid interface treatment in CHT analysis is presented and applied to two typical CHT problems, i.e. natural convections in both concentric thick-walled cylinders and cavity with a centered solid body. The present interface treatment for unstructured mesh clearly demonstrates the same accuracy and robustness as that for typical structured mesh.

Effect of Free Stream Turbulence Intensity on Heat/Mass Transfer Characteristics Around a Film Cooling Hole (주유동의 난류강도가 막냉각홀 주위의 열/물질전달 특성에 미치는 영향)

  • 이동호;김병기;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.56-63
    • /
    • 1998
  • The present study investigated local heat transfer characteristics around a film cooling hole with variations of free stream turbulence intensity The film cooling jet is injected through a single hole inclined at $30^{\cire}$ to the surface and laterally at $45^{\cire}$ for the blowing rates of 0.5, 1.0 and 2.0. Turbulence generating grids are used at upstream of the film cooling hole to change the turbulence intensity of free stream. Free stream turbulence intensity without grids is 0.5%. Two different turbulence generating grid is installed at different at locations upstream of the film cooling hole so that turbulence intensity of free stream varies from 3% to 10%. The naphthalene sublimation technique has been employed to determine local heat/ mass transfer coefficients. With low free stream turbulence intensity, heat/mass transfer augmented area by coolant or free stream is distinguished evidently. However, when free stream turbulence intensity is high, heat transfer is enhanced in all region and heat transfer enhanced regions are not clearly divided due to vigorous mixing of coolant and free stream. The peak values of heat/mass coefficients are decreased and the distributions of heat/mass transfer coefficients are more uniform with high turbulence intensity. The effect of turbulence intensity on heat transfer characteristics is more evident as blowing rate is higher.

  • PDF