• Title/Summary/Keyword: 복합슬래그골재

Search Result 22, Processing Time 0.02 seconds

Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2012
  • To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.

Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder (무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Plastic wastes generated from household waste are separated by mixed discharge with foreign substances, and recycling is relatively low. In this study, the effect of the ratio and content of mixed plastic waste coarse aggregate(MPWCA)s and mixed plastic waste fine aggregate(MPWFA)s filled with blast furnace slag fine powder on the slump and compressive strength of concrete was evaluated experimentally. The MPWCAs were found to have a similar fineness modulus, but have a single particle size distribution with a smaller particle size compared to coarse aggregates. However, the MPWFAs were found to have a single particle size distribution with a larger fineness modulus and particle size compared to fine aggregates. Meanwhile, the effect of improving the density and filling pores by the blast furnace slag fine power was found to be greater in the MPWFA compared to the MPWCA. As the amount of the mixed plastic waste aggregate(MPWA)s increased, the slump and compressive strength of concrete decreased. In particular, the lower the slump and compressive strength of concrete was found to decrease the greater the amount of MPWFA than MPWCA when the amount of MPWA was the same. This is because of the entrapped air and voids formed under the angular- and ROD-shaped aggregates among the MPWFAs. On the other hand, the addition of the admixture and the increase in the unit amount of cement were found to be effective in improving the compressive strength of the concrete with MPWAs.

Engineering Performance and Applicability of Environmental Friendly Porous Concrete for a Marine Ranch Using Steel Industry By-products (철강산업 부산물을 활용한 해양목장 조성용 친환경 다공질 콘크리트의 공학적 성능 및 적용성)

  • Lee, Byung-Jae;Jang, Young-Il;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2013
  • The steel industry, a representative industry that significantly consumes raw materials and energy, produces steel as well as a large amount of by-product steel slag through the production process. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of marine ranches were evaluated in this study. The test results for percentage of voids per mixing ratio revealed that the margin of error for all conditions was within 2.5%. The compressive strength test results showed that the most outstanding environmental friendly porous concrete can be manufactured when mixing 30% slag aggregate and 10% specially treated granular fertilizer for the optimum volume fraction. As concrete for marine applications, the best seawater resistance was obtained with mixing conditions for high compression strength. An assessment of the ability to provide a marine life habitat foundation of environmentally friendly porous concrete showed that a greater percentage of voids facilitated implantation and inhabitation of marine life, and the mixing of specially treated granular fertilizer led to active initial implantation and activation of inhabitation. The evaluation of harmfulness to marine life depending on the mixture of slag aggregate and specially treated granular fertilizer revealed that the stability of fish is secured.

Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag as an Aggregate (II) (Use of Polystyrene as a Shrinkage Reducing Agent) (아토마이징 제강 환원슬래그를 골재로 사용한 폴리머 콘크리트 복합재료의 특성(II) (폴리스티렌 수축저감재 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.380-385
    • /
    • 2014
  • Spherical atomizing reduction steel slag was prepared by atomizing technology using reduction steel slag (ladle furnace slag, LFS) generated from steel industry. In order to develop the mass-recycling technology of atomizing reduction steel slag, polymer concrete composite was prepared using spherical atomizing reduction steel slag instead of fine aggregate (river sand) and coarse aggregate (crushed aggregate), depending on the grain size. Different polymer concrete specimens were prepared with the various proportions of polymer binder and replacement ratios of atomizing reduction steel slag in order to investigate the characteristics of polymer concrete composite. Results showed that compressive strengths of polymer concrete specimens decreased with the increase of replacement ratios of atomizing reduction steel slag, but flexural strengths of the specimens showed a maximum strength at the 50% of replacement ratios of atomizing reduction steel slag. It was concluded that addition ratio of polymer binder, which affect greatly on the prime cost of production of polymer concrete, could be reduced by maximum 18.2 vol% because the workability of the polymer concrete was remarkably improved by using the atomizing reduction steel slag. However, further study is required because the mechanical strength of the specimen using atomizing reduction steel slag was greatly reduced in hot water resistance test.

Diffusivity of Chloride Ion of Composite Slag Aggregate Replacement Concrete (복합슬래그 골재 치환 콘크리트 염소이온 확산 특성)

  • Park, Dong-Cheon;Lee, Jun-Hae;Kim, Yong-Ro;Song, Yong-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.147-148
    • /
    • 2019
  • Lack of fine aggregate is adversely affecting the quality of concrete. Due to lack of land sand, EZZ sea sand has been used. However, the use of sea sand is also difficult because of the opposition of fishermen. The purpose of this study was to analysis the effect of slag fine aggregate to durability and compressive strength of concrete. The concrete compressive strength and durability were assessed to derive a proper mix ratio of fine aggregate.

  • PDF

Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates (석탄 가스화 용융 슬래그를 혼합잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Han, Min-Cheol;Kim, Jong;Choi, Il-Kyeung;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.

Characteristics of Eco-friendly Porous Concrete for Seawater Purification Using By-Products of Steel Industry (철강산업 부산물을 활용한 해수정화용 친환경 다공질콘크리트의 특성)

  • Han, Woonwoo;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • As of 2018, Steel slag was generated approximately 24.23 million tons. Howeve, except blast furnace slag, steel slag is a typical by-product which does not have a clearly defined purpose in recycling. Thus, countries around the world are putting great efforts into developing a purpose for the recycling of steel slag. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of seawater purification were in this study. Regarding the nutrient elution properties, it was clear that the nutrients continuously flowed out up to an immersion time by 8 months in natural seawater; the nitrogenous fertilizer displayed excellent elution properties in this regard.

Effects of Crushed Fine Aggregate and Durability Improvement Agent (DIA) on Blast Furnace Slag-Based Brick (내구성증진용 혼화제(DIA) 및 부순 잔골재의 복합 치환이 순환잔골재를 사용한 고로슬래그 벽돌의 특성에 미치는 영향)

  • Park, Kyung-Taek;Son, Ho-Jung;Kim, Dae-Gun;Kim, Bok-Kue;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.225-227
    • /
    • 2011
  • This study investigates the effect of crushed fine aggregate and chemical admixture (durability improvement agent, named DIA) on blast furnace slag-based brick. The control brick was made with recycled fine aggregate of 100% and, no cement was used. Test results showed that all specimens developed similar strength, except for the specimen without partial replacement of crushed fine aggregate at 3 days. However, it is interesting to note that this specimen without crushed fine aggregate resulted in the highest strength at 7 days. In addition, the DIA had a major effect on the absorption ratio of brick specimens. For the brick specimens with partial replacement of crushed fine aggregate with 10%, the addition of DIA with only 1% was enough to satisfy the code regulated by KS F 4004.

  • PDF

Strength Characteristics of Non-Sintered Cement Mortar Utilizing Ferro-Nickel Slag as Fine Aggregate (페로니켈슬래그를 잔골재로 사용한 비소성 시멘트 모르타르의 강도 특성)

  • Ryu, Ji-Su;Jang, Kyung-Su;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • This experimental study investigates the replacement of conventional Portland cement and sand with non-sintered cement and ferro-nickel slag to formulate eco-friendly cement mortar. The examination aimed to understand the strength properties of non-sintered cement mortar using ferro-nickel slag as fine aggregate by classifying mortar production types, fine aggregates, and curing methodologies. From flexural and compressive strength tests, it was observed that non-sintered cement mortars, incorporating ferro-nickel slag as fine aggregate, exhibited superior strength when compared to both plain mortar and steam-cured non-sintered mortar. This increased strength is attributed to the influence of the particle size, density, and absorption capabilities of the ferro-nickel slag. Furthermore, X-ray Diffraction(XRD) analyses of the mortars verified the presence of MgO, a component of ferro-nickel slag, in the form of a composite oxide. This finding substantiates the consistent strength manifestation of non-sintered cement mortars utilizing ferro-nickel slag as a fine aggregate.