• Title/Summary/Keyword: 복합금형

Search Result 146, Processing Time 0.03 seconds

Simulation for the Filling Process of Resin Transfer Molding by Incorporating Composity Grids (복합격자법을 이용한 수지이동성형의 충전공정에 대한수치모사)

  • 이성재
    • The Korean Journal of Rheology
    • /
    • v.9 no.3
    • /
    • pp.103-110
    • /
    • 1997
  • 고분자 복합재료 제조방법의 하나인 수지이동성형의 충전공정을 모사하기 위한 수 치모사 코드를 개발하였다. 수지이동성형의 충정공정문제를 수학적 공식으로 표현하기 위하 여 비등방성 다공질체를 통과하는 유동에 대한 이론을 사용하였다. 과도상태로 진행하는 자 유표면의 동적 충전거동을 묘사하기 위하여 수치격자 생성을 포괄하는 경계적합 좌표계의 계산기법을 적용하였다. 이와 아울러 불규칙적인 구저와 다중으로 연결된 금형면의 충전모 사에 저합한 복합격자의 개념을 도입하였다. 복합격자들 간의 가상의 경계에 대해서는 검사 체적 기법을 이용하여 물질보존을 만족시켜 주었다. 임의의 금형 두께와 투과도를 가지는 다수의 금형면이 결합된 두 개의 입구를 지닌 금형을 대상으로 하여 몇가지 예를 시험해 보 았다. 수치모사의결과 복합격자의 개념을 도입한 수치모사 코드는 수지이동성형의 복잡한 충전공정을 보다 정교하게 모사하는데 응용될수 있음을 보여주었다.

  • PDF

Study on the Prediction of Dimension Variation due to the Temperature Rises of the Composite Material and Box Beam Type Mold Steel (복합재료를 이용한 박스빔 형태 금형의 온도상승에 따른 치수 변화 예측에 관한 연구)

  • Kim, Ho-Sang;Lee, Chan-Hee;Lee, Won-Gi
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.12-16
    • /
    • 2018
  • Composite material and mold steel can be expanded differently with the temperature gradients during the forming process because their coefficients of thermal expansions are not the same. Therefore, in order to manufacture the product with accuracy, it is necessary to verify that the forming pressure on the surface of the composite material is maintained to the required level from the material supplier. In this paper, the pressure between the composite material and mold due to the temperature difference was predicted by finite element analysis and the accuracy of predicted value was verified by measuring the thermal expansions of mold steel by the ruler. The predicted value by finite element analysis is closely in agreement with one by the experiment within the required tolerance value of ${\pm}0.05mm$.

Measurement of temperature distribution of the stamper and estimation of injection-molded light guide panel performance in E-MOLD process (금형가열방식을 이용한 사출성형금형의 온도분포 측정과 E-MOLD금형을 이용한 도광판 사출품에 대한 성능 평가)

  • Kim, Young-Kyun;Kim, Dong-Hak
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.358-361
    • /
    • 2008
  • 본 논문에서는 열화상촬영기 및 온도분포 해석 프로그램을 이용하여 금형가열온도와 실제 금형온도의 온도편차를 비교하여 금형가열 시 Stamper 표면의 온도분포를 해석하였다. 또한 전열가열방식(E-MOLD)을 이용하여 복합기능 도광판(Prismless LGP)을 제조하였고, 금형온도에 따른 복합기능 도광판(Prismless LGP)의 광특성 평가를 하였다. 그 결과 금형온도가 증가할수록 패턴 전사성 향상으로 인해 휘도 또한 증가하였고, 특히 유리전이온도($140^{\circ}C$) 이상에서 크게 상승하였다.

  • PDF

Development and Analysis of the Autoclave Alternative Composite Material Molding Process Using a Pressure Device (가압장치를 이용한 오토클레이브 대체 복합재료 성형공정 개발 및 분석)

  • Kim, Jung-Soo;Kim, Byung-Ha;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.254-259
    • /
    • 2014
  • In this study, a device and pressure press process that is able to substitute autoclave process is developed. This process complements disadvantages of autoclave process which are long process-time and high production cost. The developed device provides air pressure as well as the vacuum which are greatest feature of autoclave process. The device is sealed using hydraulic pressure to keep the air pressure inside the mold. The transfer of the heat is designed to be direct. The heating and pressure charging time are decreased by reducing the interior space. Tooling cost is reduced dramatically compared to autoclave process. Spring-back phenomenon is measured and compared. The temperatures of several parts of the mold during molding are measured. The fiber volume fraction of the parts molded by autoclave process and by the developed process are compared.

Development of the Compound Die Forming Technology United between Semi-Progressive and Transfer Die (세미 프로그레시브 금형과 트랜스퍼 금형기술을 융합한 복합 자동화 금형 제조기술에 관한 연구)

  • Park, Dong-Hwan;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.126-133
    • /
    • 2015
  • To enhance the productivity and quality of the compound process of progressive dies and transfer dies, the semi-progressive method is applied in the material supply step to produce blanks, and then the transfer method is applied. Parts are transferred among processes by means of the finger and transfer bar in the transfer die, and the final seat cushion panel is produced. The main challenge in the current study is how to deform a seat cushion panel while meeting the design specifications without any defects. In order to obtain this technology, a sheet metal-forming simulation and die forming of the seat cushion panel were adopted; as a result, a compound die-forming technology for the automotive seat cushion panel, combining both semi-progressive die and transfer die for continuous production, was successfully developed.

Development of Hybrid Composite Die for the Production of the Supercapacitor (슈퍼커패시터 양산화를 위한 하이브리드 복합금형 개발)

  • Kwon, Hyuk Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.105-110
    • /
    • 2015
  • In this study, a high-speed procedure to be used in composite molding technology is developed for the production of a hybrid supercapacitor in a progressive and revolutionary current in a production system, as are the related operating conditions. Mold parts with solid modeling, the ease of programming of future mold product designs, tolerance management, and pre-explode tests by the building of a progressive die design system using Cimatron_E10 Die Design Software for the strip layout are done. The capacity of the super-hybrid composite mold design will save time and money through its verification of the manufacture of molds. We plan to apply this to future related products for production cost savings of more than 30% achieved by considering the components of the production costs, labor, and material costs of production as compared to conventional production methods.

Study on the Ballistic Performance of Kevlar/Spectra Intraply Hybrid Composites (케블라/스펙트라 하이브리드 복합재료의 방탄 성능에 관한 연구)

  • 김종원;이준석;김민영;이동률
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.215-216
    • /
    • 2003
  • 섬유강화 복합재료(FRC:Fiber Reinforced Composites)는 기존의 금속재료에 비해 높은 비강도, 비강성의 특성으로 인해 자동차, 항공산업 등 폭 넓은 응용 범위에 적용되고 있다. 특히 직물 복합재료(Fibric Composites)는 취급이 용이하고, 유연성이 높기 때문에 복잡한 형상을 가지는 금형에 적용하기가 수월하다. 하지만 아직까지는 금형의 형상에 있어서 제약을 받고 있다. (중략)

  • PDF

Manufacturing Processes of Cylindrical Composite Lattice Structures using Filament Winding Method (필라멘트 와인딩 공법을 이용한 원통형 복합재 격자구조체 제작 공정)

  • Im, Jaemoon;Shin, Kwangbok;Lee, Sangwoo;Son, Johwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.835-837
    • /
    • 2017
  • In this paper, manufacturing processes of cylindrical composite lattice structures using filament winding method was described. Cylindrical composite lattice structures were manufactured in accordance with four major steps. Silicon mold of lattice shape was installed on mandrel and then continuous fiber was wound on silicon mold. After winding process, in order to ensure the same thickness for all regions, compression process was done for its intersection parts. Finally, the composite lattice structure was demoulded after curing in oven. It was found that the manufactured cylindrical composites lattice structure had 2.4% of dimensional error compared to the design requirements.

  • PDF

Fabrication and transcription estimation of prismless LGP for cellular phone using E-Mold technology (전열가열방식을 이용한 휴대전화용 복합기능 도광판 제작 및 전사성 평가)

  • Kim, Young-Kyun;Chung, Jae-Youp;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.186-193
    • /
    • 2009
  • In this paper, we adopted E-MOLD patent technology in order to fabricate Prismless LGP(Light Guide Panel) fur cellular phone and estimate the transcription of injection-molded parts. Then, we manufactured the Ni stamper fur Prismless LGP using MEMS process. And the stamper was installed in the movable heated core which is the key part of a patented mold. Using this mold, we manufactured injection-molded plastic LGP parts with different mold temperatures so that we investigate effect of the temperature on the transcription of the parts. The CAE analysis was also conducted in order to compare with the experimental results. The transcription of LGP parts with various mold temperature displayed $100^{\circ}C$(25.0nm), $140^{\circ}C$(48.4nm), $180^{\circ}C$(52.1nm) and when compared with stamper(521Inm), transcription was superior at $180^{\circ}C$. According to the CAE results, moldability was improved as mold temperature ($50^{\circ}C{\sim}180^{\circ}C$) increased, but when filling time($1{\sim}2sec$) increases, it decreased at $160^{\circ}C$. And transcription and moldability were improved markedly at glass transition temperature($140^{\circ}C$).